MMTracking
Release 0.8.0

MMTracking Authors

Dec 17, 2021

Prerequisites

Installation
Detailed Instructions L e e e e e e
A from-scratch setup script
Developing with multiple MMTracking versions

2.1
2.2
23

Verification
Model Zoo Statistics

Benchmark and Model Zoo
Common settings
Baselines of video object detection

Baselines of multiple object tracking
Baselines of single object tracking
Baselines of video instance segmentation

5.1
52
53
54
5.5

Dataset Preparation
1. Download Datasets
2. Convert Annotations

6.1
6.2

Run with Existing Datasets and Models

... 27
.. 29
.. 32

7.1
7.2
1.3

Run with Customized Datasets and Models
1. Prepare the customized dataset
2. Prepare the customized model
3. Prepare a config
4. Train a new model
5. Test and inference the new model

8.1
8.2
8.3
8.4
8.5

Learn about Configs
Modify config through script arguments
Config File Structure
Config Name Style
Detailed analysis of Config File

9.1
9.2
9.3
9.4
9.5

GET STARTED

~N O\ L

11

13

... 13
................................... 13

.................................. 14
.................................... 14
................................ 14

15

.. 15
... 19

27

37

.................................... 37
..................................... 37
.. 38
... 38
................................... 38

10

11

12

13

14

15

16

17

18

19

20

21

22

Customize Datasets

10.1 Convert the dataset into CocoVID style
10.2 Using dataset wrappers
10.3 Subset of existing datasets

Customize Data Pipelines
11.1 Data pipeline for a single image
11.2 Data pipeline for multiple images . . .

Customize VID Models

12.1 Addanewdetector
12.2 Add anew motionmodel
12.3 Add a new aggregator

Customize MOT Models

13.1 Addanewtracker
13.2 Addanewdetector
13.3 Add anew motionmodel
134 Addanewreidmodel
13.5 Addanewtrackhead.
13.6 Addanewloss

Customize SOT Models

14.1 Add anewbackbone
142 Addanewneck.
143 Addanewhead
144 Addanewloss

Customize Runtime Settings

15.1 Customize optimization settings
15.2 Customize training schedules
15.3 Customize workflow
15.4 Customize hooks

MOT Test-time Parameter Search
SiameseRPN++ Test-time Parameter Search
Log Analysis

Model Conversion
19.1 Prepare a model for publishing

Miscellaneous
20.1 Print the entire config

Model Serving

21.1 1. Convert model from MMTracking to TorchServe

21.2 2. Build mmtrack-serve docker image

21.3 3. Runmmtrack-serve e
214 4. Testdeployment L L e e e e e e e e

Changelog

22.1 v0.8.0 (03/10/2021) . . . o o o
22.2 v0.7.0 (03/09/2021) o
223 v0.6.0 BO/OT/2021) . o o o o e e e e

43
43
44
47

49
49
49

53
53
53
54

57
57
58
58
59
60
61

63
63
64
65
66

67
67
69
70
70

75

77

79

81
81

83
83

85
85
85
85
86

23

24

25

26

27

28

29

30

224 v0O53 (01/07/2021) . . o oo e
22,5 v0.5.2(03/06/2021) . . . Lo
22,6 vO.5.1 (01/02/2021) . . o o o o e
2277 v0.5.0 (04/0172021) o e e

English

mmtrack.apis

mmtrack.core

26.1 anchor e e e e e e e
26.2 evaluation L L e e e e e e e e
26.3 MOLION e e e e e e e e e e e e e e
204 OPHMIZET o o e e e e e e e e e e e e e e e e e e e
26.5 track .. oL e e e e
26.6 Utils . .. L e e e e e e e

mmtrack.datasets

27.1 datasetso e e e e e e e e e e e
272 PATSEIS « v v v v v e
273 pipelines e e e e e e e e e e
274 samplers e e e e e e e e e e

mmtrack.models

28.1 MOt . . . e e e e e e e e e
28.2 SOL . . e e e e e e e e e
283 VId .. e e
284 AZETEZALOTS .+ v v v v v e
28.5 backbones e e
28.6 10SSES i e e e e e e
28.7 MOLION e e e e e e e e e e e e e e e e e
28.8 reid . .. e e e e e e e e e e
28.9 roi_heads e
28.10 track_heads e e e
28.11 builder e e e e e

mmtrack.utils

Indices and tables

Python Module Index

Index

93

95

97
97
97
97
97
97
97

99
99
99
99
99

101
101
101
101
101
102
102
102
102
102
102
102

103

105

107

109

MMTracking, Release 0.8.0

You can switch between Chinese and English documents in the lower-left corner of the layout.

GET STARTED 1

MMTracking, Release 0.8.0

2 GET STARTED

CHAPTER
ONE

PREREQUISITES

Linux or macOS

Python 3.6+

PyTorch 1.3+

CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
GCC 5+

MMCV

MMDetection

The compatible MMTracking, MMCYV, and MMDetection versions are as below. Please install the correct version to
avoid installation issues.

https://mmcv.readthedocs.io/en/latest/get_started/installation.html
https://mmdetection.readthedocs.io/en/latest/get_started.html#installation

MMTracking, Release 0.8.0

4 Chapter 1. Prerequisites

CHAPTER
TWO

INSTALLATION

2.1 Detailed Instructions

1. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

2. Install PyTorch and torchvision following the official instructions, e.g.,

conda install pytorch torchvision -c pytorch

Note: Make sure that your compilation CUDA version and runtime CUDA version match. You can check the
supported CUDA version for precompiled packages on the PyTorch website.

E.g.1 If you have CUDA 10.1 installed under /usr/local/cuda and would like to install PyTorch 1.5, you
need to install the prebuilt PyTorch with CUDA 10.1.

conda install pytorch==1.5 cudatoolkit=10.1 torchvision -c pytorch

E.g. 2 If you have CUDA 9.2 installed under /usr/local/cuda and would like to install PyTorch 1.3.1., you
need to install the prebuilt PyTorch with CUDA 9.2.

conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch

If you build PyTorch from source instead of installing the prebuilt package, you can use more CUDA versions
such as 9.0.

3. Install mmcv-full, we recommend you to install the pre-build package as below.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cul®1/torchl.6.0/
—index.html

See here for different versions of MMCYV compatible to different PyTorch and CUDA versions. Optionally you
can choose to compile mmcv from source by the following command

git clone https://github.com/open-mmlab/mmcv.git

cd mmcv

MMCV_WITH_OPS=1 pip install -e . # package mmcv-full will be installed after this.,
- step

cd ..

Or directly run

https://pytorch.org/
https://pytorch.org/
https://mmcv.readthedocs.io/en/latest/get_started/installation.html

MMTracking, Release 0.8.0

pip install mmcv-full

4. Install MMDetection

pip install mmdet

Optionally, you can also build MMDetection from source in case you want to modify the code:

git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection

pip install -r requirements/build.txt

pip install -v -e . # or "python setup.py develop"

5. Clone the MMTracking repository.

git clone https://github.com/open-mmlab/mmtracking.git
cd mmtracking

6. Install build requirements and then install MMTracking.

pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"

7. Install extra dependencies for VOT evaluation

pip install git+https://github.com/votchallenge/toolkit.git

Note:

a. Following the above instructions, MMTracking is installed on dev mode , any local modifications made to the code
will take effect without the need to reinstall it.

b. If you would like to use opencv-python-headless instead of opencv-python, you can install it before installing
MMCV.

2.2 A from-scratch setup script

Assuming that you already have CUDA 10.1 installed, here is a full script for setting up MMTracking with conda.

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch -y
install the latest mmcv
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cul®1l/torchl.6.0/index.

—html

install mmdetection
pip install mmdet

install mmtracking
git clone https://github.com/open-mmlab/mmtracking.git

(continues on next page)

6 Chapter 2. Installation

MMTracking, Release 0.8.0

(continued from previous page)

cd mmtracking

pip install -r requirements/build.txt

pip install -v -e .

pip install git+https://github.com/votchallenge/toolkit.git

2.3 Developing with multiple MMTracking versions

The train and test scripts already modify the PYTHONPATH to ensure the script use the MMTracking in the current
directory.

To use the default MMTracking installed in the environment rather than that you are working with, you can remove the
following line in those scripts

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH

2.3. Developing with multiple MMTracking versions 7

MMTracking, Release 0.8.0

8 Chapter 2. Installation

CHAPTER
THREE

VERIFICATION

To verify whether MMTracking and the required environment are installed correctly, we can run MOT, VID, SOT demo
script.

For example, run MOT demo and you will see a output video named mot .mp4:

python demo/demo_mot_vis.py configs/mot/deepsort/sort_faster-rcnn_fpn_4e_motl7-private.
—py --input demo/demo.mp4 --output mot.mp4

MMTracking, Release 0.8.0

10 Chapter 3. Verification

CHAPTER
FOUR

MODEL ZOO STATISTICS

* Number of papers: 8
— ABSTRACT: 8

e Number of checkpoints: 33
— [ABSTRACT] Simple online and realtime tracking with a deep association metric (2 ckpts)
— [ABSTRACT] Tracking without Bells and Whistles (7 ckpts)
— [ABSTRACT] Siamrpn++: Evolution of Siamese Visual Tracking With Very Deep Networks (5 ckpts)
— [ABSTRACT] Deep Feature Flow for Video Recognition (3 ckpts)
— [ABSTRACT] Flow-guided Feature Aggregation for Video Object Detection (3 ckpts)
— [ABSTRACT] Sequence Level Semantics Aggregation for Video Object Detection (4 ckpts)
— [ABSTRACT] Temporal Rol Align for Video Object Recognition (3 ckpts)
— [ABSTRACT] Video Instance Segmentation (6 ckpts)

11

https://github.com/open-mmlab/mmtracking/blob/master/https://github.com/open-mmlab/mmtracking/blob/master/configs/mot/deepsort
https://github.com/open-mmlab/mmtracking/blob/master/https://github.com/open-mmlab/mmtracking/blob/master/configs/mot/tracktor
https://github.com/open-mmlab/mmtracking/blob/master/https://github.com/open-mmlab/mmtracking/blob/master/configs/sot/siamese_rpn
https://github.com/open-mmlab/mmtracking/blob/master/https://github.com/open-mmlab/mmtracking/blob/master/configs/vid/dff
https://github.com/open-mmlab/mmtracking/blob/master/https://github.com/open-mmlab/mmtracking/blob/master/configs/vid/fgfa
https://github.com/open-mmlab/mmtracking/blob/master/https://github.com/open-mmlab/mmtracking/blob/master/configs/vid/selsa
https://github.com/open-mmlab/mmtracking/blob/master/https://github.com/open-mmlab/mmtracking/blob/master/configs/vid/temporal_roi_align
https://github.com/open-mmlab/mmtracking/blob/master/https://github.com/open-mmlab/mmtracking/blob/master/configs/vis/masktrack_rcnn

MMTracking, Release 0.8.0

12 Chapter 4. Model Zoo Statistics

CHAPTER
FIVE

BENCHMARK AND MODEL Z0OO

5.1 Common settings

* We use distributed training.
* All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo.

* For fair comparison with other codebases, we report the GPU memory as the maximum value of torch.cuda.
max_memory_allocated() for all 8 GPUs. Note that this value is usually less than what nvidia-smi shows.

* We report the inference time as the total time of network forwarding and post-processing, excluding the data load-
ing time. Results are obtained with the script tools/analysis/benchmark.py which computes the average
time on 2000 images.

* Speed benchmark environments
HardWare
— 8 NVIDIA Tesla V100 (32G) GPUs
— Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Software environment

Python 3.7

PyTorch 1.5
CUDA 10.1
CUDNN 7.6.03
NCCL 2.4.08

5.2 Baselines of video object detection

5.2.1 DFF (CVPR 2017)

Please refer to DFF for details.

13

https://github.com/open-mmlab/mmtracking/blob/master/configs/vid/dff

MMTracking, Release 0.8.0

5.2.2 FGFA (ICCV 2017)

Please refer to FGFA for details.

5.2.3 SELSA (ICCV 2019)

Please refer to SELSA for details.

5.2.4 Temporal Rol Align (AAAI 2021)
Please refer to Temporal Rol Align for details.
5.3 Baselines of multiple object tracking

5.3.1 SORT/DeepSORT (ICIP 2016/2017)

Please refer to SORT/DeepSORT for details.

5.3.2 Tracktor (ICCV 2019)

Please refer to Tracktor for details.

5.4 Baselines of single object tracking

5.4.1 SiameseRPN++ (CVPR 2019)

Please refer to SiameseRPN++ for details.

5.5 Baselines of video instance segmentation

5.5.1 MaskTrack R-CNN (ICCV 2019)

Please refer to MaskTrack R-CNN for details.

14 Chapter 5. Benchmark and Model Zoo

https://github.com/open-mmlab/mmtracking/blob/master/configs/vid/fgfa
https://github.com/open-mmlab/mmtracking/blob/master/configs/vid/selsa
https://github.com/open-mmlab/mmtracking/blob/master/configs/vid/temporal_roi_align
https://github.com/open-mmlab/mmtracking/blob/master/configs/mot/deepsort
https://github.com/open-mmlab/mmtracking/blob/master/configs/mot/tracktor
https://github.com/open-mmlab/mmtracking/blob/master/configs/sot/siamese_rpn
https://github.com/open-mmlab/mmtracking/blob/master/configs/vis/masktrack_rcnn

CHAPTER
SIX

DATASET PREPARATION

This page provides the instructions for dataset preparation on existing benchmarks, include
* Video Object Detection
— ILSVRC
* Multiple Object Tracking
— MOT Challenge
— CrowdHuman
* Single Object Tracking
- LaSOT
UAV123

TrackingNet
OTB100
GOT10k
VOT2018

* Video Instance Segmentation

— YouTube-VIS

6.1 1. Download Datasets

Please download the datasets from the official websites. It is recommended to symlink the root of the datasets to
$MMTRACKING/data.

6.1.1 1.1 Video Object Detection

* For the training and testing of video object detection task, only ILSVRC dataset is needed.

e The Lists under ILSVRC contains the txt files from here.

15

http://image-net.org/challenges/LSVRC/2017/
https://motchallenge.net/
https://www.crowdhuman.org/
http://vision.cs.stonybrook.edu/~lasot/
https://cemse.kaust.edu.sa/ivul/uav123/
https://tracking-net.org/
http://www.visual-tracking.net/
http://got-10k.aitestunion.com/
https://www.votchallenge.net/vot2018/
https://youtube-vos.org/dataset/vis/
https://github.com/msracver/Flow-Guided-Feature-Aggregation/tree/master/data/ILSVRC2015/ImageSets

MMTracking, Release 0.8.0

6.1.2 1.2 Multiple Object Tracking

* For the training and testing of multi object tracking task, one of the MOT Challenge datasets (e.g. MOT17) is
needed, and CrowdHuman can be served as comlementary dataset.

6.1.3 1.3 Single Object Tracking

* For the training and testing of single object tracking task, the MSCOCO, ILSVRC, LaSOT, UAV123, Track-
ingNet, OTB100, GOT10k and VOT2018 datasets are needed.

» For OTB100 dataset, you don’t need to download the dataset from the official website manually, since we provide
a script to download it.

download OTB100 dataset by web crawling
python ./tools/convert_datasets/otb100/download_otbl100.py -o ./data/otb100/zips -p 8

» For VOT2018, we use the official downloading script.

download VOT2018 dataset by web crawling
python ./tools/convert_datasets/vot/download_vot.py --dataset vot2018 --save_path ./data/
—vot2018/data

6.1.4 1.4 Video Instance Segmentation

* For the training and testing of video instance segmetatioon task, only one of YouTube-VIS datasets (e.g.
YouTube-VIS 2019) is needed.

6.1.5 1.5 Data Structure

If your folder structure is different from the following, you may need to change the corresponding paths in config files.

mmtracking

— mmtrack

— tools

— configs

— data

— coco

— train2017
— val2017

— test2017
— annotations

—— ILSVRC

— Data

— DET

— train
— val
— test
— VID

— train
— val

(continues on next page)

16 Chapter 6. Dataset Preparation

MMTracking, Release 0.8.0

(continued from previous page)

| — test

—— Annotations
— DET

train
val

—— VID

train
val

— Lists

— MOT15/MOT16/MOT17/MOT20
| — train
| — test

— crowdhuman

— annotation_train.odgt

— annotation_val.odgt

— train

— Images

— CrowdHuman_train@1.zip
— CrowdHuman_train®2.zip
— CrowdHuman_train®3.zip

— Images
— CrowdHuman_val.zip

— lasot

—— LaSOTBenchmark
airplane

| airplane-1
| airplane-2

— UAV123
— data_seq

UAV123
bikel
boatl

—— anno

— vAvi23

— trackingnet
—— TEST.zip
L TRAIN_®.zip

— TRAIN_11.zip

— otb100
— zips
| — Basketball.zip

(continues on next page)

6.1. 1. Download Datasets 17

MMTracking, Release 0.8.0

(continued from previous page)

— Biker.zip

— gotl0k

— full_data

— train_data
GOT-10k_Train_split_01.zip
GOT-10k_Train_split_19.zip
list.txt

— test_data.zip

— val_data.zip

— vot2018

| — data
[[

antsl

| F—color

— youtube_vis_2019
— train
— JPEGImages

— test
— JPEGImages

— train.json (the official annotation files)
— valid.json (the official annotation files)
— test.json (the official annotation files)

— youtube_vis_2021
— train
— JPEGImages

— JPEGImages

— test
— JPEGImages

— instances.json (the official annotation files)

— instances.json (the official annotation files)

— instances.json (the official annotation files)

18

Chapter 6. Dataset Preparation

MMTracking, Release 0.8.0

6.2 2. Convert Annotations

We use CocoVID to maintain all datasets in this codebase. In this case, you need to convert the official annotations to
this style. We provide scripts and the usages are as following:

ImageNet DET
python ./tools/convert_datasets/ilsvrc/imagenet2coco_det.py -i ./data/ILSVRC -o ./data/
—ILSVRC/annotations

ImageNet VID
python ./tools/convert_datasets/ilsvrc/imagenet2coco_vid.py -i ./data/ILSVRC -o ./data/
—ILSVRC/annotations

MOT17

The processing of other MOT Challenge dataset is the same as MOT17

python ./tools/convert_datasets/mot/mot2coco.py -i ./data/MOT17/ -o ./data/MOT17/
—annotations --split-train --convert-det

python ./tools/convert_datasets/mot/mot2reid.py -i ./data/MOT17/ -o ./data/MOT17/reid --
—val-split 0.2 --vis-threshold 0.3

CrowdHuman
python ./tools/convert_datasets/mot/crowdhuman2coco.py -i ./data/crowdhuman -o ./data/
—.crowdhuman/annotations

LaSOT
python ./tools/convert_datasets/lasot/lasot2coco.py -i ./data/lasot/LaSOTBenchmark -o ./
—data/lasot/annotations

UAV1Z23
python ./tools/convert_datasets/uavl123/uav2coco.py -i ./data/UAV123/ -o ./data/UAV123/
—,annotations

TrackingNet

unzip files in 'data/trackingnet/*.zip'

bash ./tools/convert_datasets/trackingnet/unzip_trackingnet.sh ./data/trackingnet

generate annotations

python ./tools/convert_datasets/trackingnet/trackingnet2coco.py -i ./data/trackingnet -o.
- ./data/trackingnet/annotations

OTB100

unzip files in 'data/otbl100/zips/*.zip'

bash ./tools/convert_datasets/otb100/unzip_otb100.sh ./data/otb100

generate annotations

python ./tools/convert_datasets/otb100/otb2coco.py -i ./data/otbl®0 -o ./data/otb100/
—annotations

GOT10k

unzip 'data/gotl0k/full_data/test_data.zip', 'data/gotl0k/full_data/val_data.zip' and.
—files in 'data/gotlO0k/full_data/train_data/*.zip'

bash ./tools/convert_datasets/gotl0k/unzip_gotl0k.sh ./data/gotl0k

generate annotations

python ./tools/convert_datasets/gotl0k/gotl®k2coco.py -i ./data/gotl0®k -o ./data/gotlOk/
—,annotations

(continues on next page)

6.2. 2. Convert Annotations 19

https://github.com/open-mmlab/mmtracking/blob/master/mmtrack/datasets/parsers/coco_video_parser.py

MMTracking, Release 0.8.0

(continued from previous page)

VOT2018

python ./tools/convert_datasets/vot/vot2coco.py -i ./data/vot2018 -o ./data/vot2018/
—annotations --dataset_type vot2018

YouTube-VIS 2019

python ./tools/convert_datasets/youtubevis/youtubevis2coco.py -i ./data/youtube_vis_2019.

-0 ./data/youtube_

YouTube-VIS 2021

vis_2019/annotations --version 2019

python ./tools/convert_datasets/youtubevis/youtubevis2coco.py -i ./data/youtube_vis_2021.

-0 ./data/youtube_

vis_2021/annotations --version 2021

The folder structure will be as following after your run these scripts:

mmtracking
—— mmtrack
— tools
— configs
— data
— coco
— train2017
— val2017
— test2017
— annotations
— ILSVRC
— Data
— DET
| — train
| — val
| — test
| — VID
| | — train
| — val
| — test
—— Annotations (the official annotation files)
— DET
— train
— val
— VID
— train
— val
— Lists

— train
— test

— reid

|
|
| — annotations
|

— imgs

— annotations (the converted annotation files)

— MOT15/MOT16/MOT17/MOT20

(continues on next page)

20

Chapter 6. Dataset Preparation

MMTracking, Release 0.8.0

(continued from previous page)

| F—— meta

— crowdhuman

— annotation_train.odgt

— annotation_val.odgt

— train

— Images

— CrowdHuman_train@1.zip
— CrowdHuman_train@®2.zip
— CrowdHuman_train®3.zip

— Images

— CrowdHuman_val.zip
— annotations

— crowdhuman_train. json
— crowdhuman_val. json

— lasot
—— LaSOTBenchmark
airplane
| airplane-1
| airplane-2
[T I I S
— annotations
— UAV123
— data_seq
UAV123
bikel
boatl

—— anno (the official annotation files)

— uAvi123

—— annotations (the converted annotation file)

— trackingnet

— TEST

— anno (the official annotation files)
— zips

— frames (the unzipped folders)
0-6LB4FqxoE_0

07Ysk1COZX0_0

—— TRAIN_O

— anno (the official annotation files)
— zips

— frames (the unzipped folders)
-3TIfnTSM6cC_2

alqoBleERn0_0

(continues on next page)

6.2. 2. Convert Annotations

21

MMTracking, Release 0.8.0

(continued from previous page)

— TRAIN_11
—— annotations (the converted annotation file)

— oth100
— zips
— Basketball.zip
—— Biker.zip
— annotations
— data
— Basketball
|— img

— gotlOk

— full_data

— train_data
GOT-10k_Train_split_01.zip
GOT-10k_Train_split_19.zip
list.txt

— test_data.zip

— val_data.zip

— train

— GOT-10k_Train_000001

— GOT-10k_Train_009335

— list.txt

— test

— GOT-10k_Test_000001

— GOT-10k_Test_000180

— list.txt

— GOT-10k_Val_000001
— GOT-10k_Val_000180
— list.txt
— annotations

— vot2018

— data
| antsl
|—color

——— annotations

— youtube_vis_2019
— train
— JPEGImages

(continues on next page)

22

Chapter 6. Dataset Preparation

MMTracking, Release 0.8.0

(continued from previous page)

— JPEGImages

— test

— JPEGImages

— train.json (the official annotation files)
— valid.json (the official annotation files)
— test.json (the official annotation files)
— annotations (the converted annotation file)

— youtube_vis_2021

— train

— JPEGImages

— instances.json (the official annotation files)

— JPEGImages

— instances.json (the official annotation files)
— test

— JPEGImages

— instances.json (the official annotation files)

— annotations (the converted annotation file)

6.2.1 The folder of annotations in ILSVRC

There are 3 JSON files in data/ILSVRC/annotations:

imagenet_det_30pluslcls. json: JSON file containing the annotations information of the training set in ImageNet
DET dataset. The 30 in 30pluslcls denotes the overlapped 30 categories in ImageNet VID dataset, and the 1cls
means we take the other 170 categories in ImageNet DET dataset as a category, named as other_categeries.

imagenet_vid_train. json: JSON file containing the annotations information of the training set in ImageNet VID
dataset.

imagenet_vid_val. json: JSON file containing the annotations information of the validation set in ImageNet VID
dataset.

6.2.2 The folder of annotations and reid in MOT15/MOT16/MOT17/MOT20

We take MOT17 dataset as examples, the other datasets share similar structure.

There are 8 JSON files in data/MOT17/annotations:

train_cocoformat. json: JSON file containing the annotations information of the training set in MOT17 dataset.
train_detections.pkl: Pickle file containing the public detections of the training set in MOT17 dataset.
test_cocoformat. json: JSON file containing the annotations information of the testing set in MOT17 dataset.
test_detections.pkl: Pickle file containing the public detections of the testing set in MOT17 dataset.

half-train_cocoformat. json, half-train_detections.pkl, half-val_cocoformat. jsonand
half-val_detections.pkl share similar meaning with train_cocoformat. json and train_detections.pkl.

6.2. 2. Convert Annotations 23

MMTracking, Release 0.8.0

The half means we split each video in the training set into half. The first half videos are denoted as half-train set,
and the second half videos are denoted ashalf-val set.

The structure of data/MOT17/reid is as follows:

reid

— imgs

—— MOT17-02-FRCNN_000002
— 000000. jpg

— 000001. jpg

— MOT17-02-FRCNN_000003
— 000000. jpg

— 000001. jpg

— meta
— train_80.txt
— val_20.txt

The 80 in train_80. txt means the proportion of the training dataset to the whole RelD dataset is 80%. While the
proportion of the validation dataset is 20%.

For training, we provide a annotation list train_80.txt. Each line of the list contains a filename and its corresponding
ground-truth labels. The format is as follows:

MOT17-05-FRCNN_000110/000018. jpg O
MOT17-13-FRCNN_000146/000014.jpg 1
MOT17-05-FRCNN_000088/000004. jpg 2
MOT17-02-FRCNN_000009,/000081 . jpg 3

MOT17-05-FRCNN_000110 denotes the 110-th person in MOT17-05-FRCNN video.
For validation, The annotation list val_20. txt remains the same as format above.

Images in reid/imgs are cropped from raw images in MOT17/train by the corresponding gt.txt. The value of
ground-truth labels should fall in range [®, num_classes - 1].

6.2.3 The folder of annotations in crowdhuman

There are 2 JSON files in data/crowdhuman/annotations:

crowdhuman_train. json: JSON file containing the annotations information of the training set in CrowdHuman
dataset. crowdhuman_val. json: JSON file containing the annotations information of the validation set in CrowdHu-
man dataset.

6.2.4 The folder of annotations in lasot

There are 2 JSON files in data/lasot/annotations:

lasot_train.json: JSON file containing the annotations information of the training set in LaSOT dataset.
lasot_test.json: JSON file containing the annotations information of the testing set in LaSOT dataset.

24 Chapter 6. Dataset Preparation

MMTracking, Release 0.8.0

6.2.5 The folder of annotations in UAV123

There are only 1 JSON files in data/UAV123/annotations:

uav123.json: JSON file containing the annotations information of the UAV123 dataset.

6.2.6 The folder of frames and annotations in TrackingNet

There are 511 video directories of TrackingNet testsetin data/trackingnet/TEST/frames, and each video directory
contains all images of the video. Similar file structures can be seen in data/trackingnet/TRAIN_{*}/frames.
There are 2 JSON files in data/trackingnet/annotations:

trackingnet_test. json: JSON file containing the annotations information of the testing set in TrackingNet dataset.
trackingnet_train. json: JSON file containing the annotations information of the training set in TrackingNet
dataset.

6.2.7 The folder of data and annotations in OTB100

There are 98 video directories of OTB100 dataset in data/otb100/data, and the img folder under each video directory
contains all images of the video.

There are only 1 JSON files in data/otb100/annotations:

0tb100. json: JSON file containing the annotations information of the OTB100 dataset.

6.2.8 The folder of frames and annotations in GOT10k

There are training video directories in data/got10k/train, and each video directory contains all images of the video.
Similar file structures can be seen in data/got10k/test and data/got10k/val.

There are 3 JSON files in data/got10k/annotations:

got10k_train. json: JSON file containing the annotations information of the training set in GOT10k dataset.
gotl®k_test.json: JSON file containing the annotations information of the testing set in GOT10k dataset.
got10k_val. json: JSON file containing the annotations information of the valuation set in GOT10k dataset.

6.2.9 The folder of data and annotations in VOT2018

There are 60 video directories of VOT2018 dataset in data/vot2018/data, and the color folder under each video
directory contains all images of the video.

There are only 1 JSON files in data/vot2018/annotations:

vot2018. json: JSON file containing the annotations information of the VOT2018 dataset.

6.2. 2. Convert Annotations 25

MMTracking, Release 0.8.0

6.2.10 The folder of annotations in youtube_vis 2019/youtube_vis2021

There are 3 JSON files in data/youtube_vis_2019/annotations or data/youtube_vis_2021/annotations:

youtube_vis_2019_train. json/youtube_vis_2021_train. json: JSON file containing the annotations infor-
mation of the training set in youtube_vis_2019/youtube_vis2021 dataset.

youtube_vis_2019_valid. json/youtube_vis_2021_valid. json: JSON file containing the annotations infor-
mation of the validation set in youtube_vis_2019/youtube_vis2021 dataset.

youtube_vis_2019_test. json/youtube_vis_2021_test.json: JSON file containing the annotations informa-
tion of the testing set in youtube_vis_2019/youtube_vis2021 dataset.

26 Chapter 6. Dataset Preparation

CHAPTER
SEVEN

RUN WITH EXISTING DATASETS AND MODELS

MMTracking provides various methods on existing benchmarks. Details about these methods and benchmarks are
presented in model_zoo.md. This note will show how to perform common tasks on existing models and standard
datasets, including:

¢ Inference existing models on a given video or image folder.
* Test (inference and evaluate) existing models on standard datasets.

* Train existing models on standard datasets.

7.1 Inference

We provide demo scripts to inference a given video or a folder that contains continuous images. The source codes are
available here.

Note that if you use a folder as the input, there should be only images in this folder and the image names must be
sortable, which means we can re-order the images according to the filenames.

7.1.1 Inference VID models

This script can inference an input video with a video object detection model.

python demo/demo_vid.py \
${CONFIG_FILE}\
--input ${INPUT} \
--checkpoint ${CHECKPOINT_FILE} \
[--output ${OUTPUT}] \
[--device ${DEVICE}] \
[--show]

The INPUT and OUTPUT support both mp4 video format and the folder format.

Optional arguments:
* OUTPUT: Output of the visualized demo. If not specified, the --show is obligate to show the video on the fly.
* DEVICE: The device for inference. Options are cpu or cuda: 0, etc.
* --show: Whether show the video on the fly.

Examples:

Assume that you have already downloaded the checkpoints to the directory checkpoints/

27

https://mmtracking.readthedocs.io/en/latest/model_zoo.html
https://github.com/open-mmlab/mmtracking/tree/master/demo/

MMTracking, Release 0.8.0

python ./demo/demo_vid.py \
./configs/vid/selsa/selsa_faster_rcnn_r101_dc5_1x_imagenetvid.py \
--input VIDEO_FILE} \
--checkpoint checkpoints/selsa_faster_rcnn_r101_dc5_1x_imagenetvid_20201218_172724-
—»aa9%961bcc.pth \
--output OUTPUT} \
--show

7.1.2 Inference MOT/VIS models

This script can inference an input video / images with a multiple object tracking or video instance segmentation model.

python demo/demo_mot_vis.py \
CONFIG_FILE} \

--input INPUT} \
[--output OUTPUT}] \
[--checkpoint CHECKPOINT_FILE}] \
[--score-thr SCORE_THR} \
[--device DEVICE}] \
[--backend ${BACKEND!] \
[--show]

The INPUT and OUTPUT support both mp4 video format and the folder format.
Optional arguments:
* OUTPUT: Output of the visualized demo. If not specified, the --show is obligate to show the video on the fly.

e CHECKPOINT_FILE: The checkpoint is optional in case that you already set up the pretrained models in the config
by the key pretrains.

* SCORE_THR: The threshold of score to filter bboxes.

* DEVICE: The device for inference. Options are cpu or cuda: 0, etc.

* BACKEND: The backend to visualize the boxes. Options are cv2 and plt.
e --show: Whether show the video on the fly.

Examples of running mot model:

python demo/demo_mot_vis.py \
configs/mot/deepsort/sort_faster-rcnn_fpn_4e_motl7-private.py \
--input demo/demo.mp4 \
--output mot.mp4 \

Important: When running demo_mot_vis.py, we suggest you use the config containing private, since private
means the MOT method doesn’t need external detections.

Examples of running vis model:

Assume that you have already downloaded the checkpoints to the directory checkpoints/

python demo/demo_mot_vis.py \

configs/vis/masktrack_rcnn/masktrack_rcnn_r50_fpn_12e_youtubevis2019.py \
--input VIDEO_FILE} \

--checkpoint checkpoints/masktrack_rcnn_r50_fpn_12e_youtubevis2019_20211022_194830-

~ A~ O-1 4+Ja\ T
—ocabpIreptinr—x (continues on next page)

28 Chapter 7. Run with Existing Datasets and Models

MMTracking, Release 0.8.0

(continued from previous page)

--output OUTPUT} \
--show

7.1.3 Inference SOT models

This script can inference an input video with a single object tracking model.

python demo/demo_sot.py \
CONFIG_FILE\
--input INPUT} \
--checkpoint CHECKPOINT_FILE} \
[--output OUTPUT}] \
[--device DEVICE}] \
[--show] \
[--gt_bbox_file GT_BBOX_FILE}]

The INPUT and OUTPUT support both mp4 video format and the folder format.

Optional arguments:
* OUTPUT: Output of the visualized demo. If not specified, the --show is obligate to show the video on the fly.
* DEVICE: The device for inference. Options are cpu or cuda: 0, etc.
e --show: Whether show the video on the fly.

e --gt_bbox_file: The gt_bbox file path of the video. We only use the gt_bbox of the first frame. If not specified,
you would draw init bbox of the video manually.

Examples:

Assume that you have already downloaded the checkpoints to the directory checkpoints/

python ./demo/demo_sot.py \
./configs/sot/siamese_rpn/siamese_rpn_r50_1x_lasot.py \
--input VIDEO_FILE} \
--checkpoint checkpoints/siamese_rpn_r50_1x_lasot_20201218_051019-3c522eff.pth \
--output OUTPUT} \
--show

7.2 Testing

This section will show how to test existing models on supported datasets. The following testing environments are
supported:

* single GPU
* single node multiple GPU
* multiple nodes
During testing, different tasks share the same API and we only support samples_per_gpu = 1.

You can use the following commands for testing:

7.2. Testing 29

MMTracking, Release 0.8.0

single-gpu testing
python tools/test.py ${CONFIG_FILE} [--checkpoint CHECKPOINT_FILE}] [--out ${RESULT_
FILE}] [--eval EVAL_METRICS}]

multi-gpu testing
./tools/dist_test.sh CONFIG_FILE GPU_NUM} [--checkpoint CHECKPOINT_FILE}] [--out
—{RESULT_FILE}] [--eval EVAL_METRICS}]

Optional arguments:

e CHECKPOINT_FILE: Filename of the checkpoint. You do not need to define it when applying some MOT methods
but specify the checkpoints in the config.

e RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a
file.

e EVAL_METRICS: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., bbox is available
for ImageNet VID, track is available for LaSOT, bbox and track are both suitable for MOT17.

» --cfg-options: If specified, the key-value pair optional cfg will be merged into config file

* --eval-options: If specified, the key-value pair optional eval cfg will be kwargs for dataset.evaluate() function,
it’s only for evaluation

e --format-only: If specified, the results will be formatted to the official format.
7.2.1 Examples of testing VID model

Assume that you have already downloaded the checkpoints to the directory checkpoints/.

1. Test DFF on ImageNet VID, and evaluate the bbox mAP.

python tools/test.py configs/vid/dff/dff_faster_rcnn_r101_dc5_1x_imagenetvid.py \
--checkpoint checkpoints/dff_faster_rcnn_r101_dc5_1x_imagenetvid_20201218_
~.172720-ad732e17.pth \
--out results.pkl \
--eval bbox

2. Test DFF with 8 GPUs on ImageNet VID, and evaluate the bbox mAP.

./tools/dist_test.sh configs/vid/dff/dff_faster_rcnn_r101_dc5_1x_imagenetvid.py 8 \
--checkpoint checkpoints/dff_faster_rcnn_r101_dc5_1x_imagenetvid_20201218_
-»172720-ad732e17.pth \
--out results.pkl \
--eval bbox

30 Chapter 7. Run with Existing Datasets and Models

MMTracking, Release 0.8.0

7.2.2 Examples of testing MOT model

1. Test Tracktor on MOT17, and evaluate CLEAR MOT metrics.

python tools/test.py configs/mot/tracktor/tracktor_faster-rcnn_r50_fpn_4e_motl7-
—public-half.py \
--eval track

2. Test Tracktor with 8 GPUs on MOT17, and evaluate CLEAR MOT metrics.

./tools/dist_test.sh configs/mot/tracktor/tracktor_faster-rcnn_r50_fpn_4e_motl7-
—public-half.py 8 \
--eval track

3. If you want to test Tracktor with your detector and reid model, you need modify the corresponding key-value pair
in config as follows:

model = dict(
detector=dict(
init_cfg=dict(
type='Pretrained’,
checkpoint="/path/to/detector_model ")),
reid=dict(
init_cfg=dict(
type='Pretrained’,
checkpoint="/path/to/reid_model"))

7.2.3 Examples of testing SOT model

Assume that you have already downloaded the checkpoints to the directory checkpoints/.

1. Test SiameseRPN++ on LaSOT, and evaluate the success, precision and normed precision.

python tools/test.py configs/sot/siamese_rpn/siamese_rpn_r50_1x_lasot.py \
--checkpoint checkpoints/siamese_rpn_r50_1x_lasot_20201218_051019-3c522eff.pth \
--out results.pkl \
--eval track

2. Test SiameseRPN++ with 8 GPUs on LaSOT, and evaluate the success, precision and normed precision.

./tools/dist_test.sh configs/sot/siamese_rpn/siamese_rpn_r50_1x_lasot.py 8 \
--checkpoint checkpoints/siamese_rpn_r50_1x_lasot_20201218_051019-3c522eff.pth \
--out results.pkl \

--eval track

7.2. Testing 31

MMTracking, Release 0.8.0

7.2.4 Examples of testing VIS model

Assume that you have already downloaded the checkpoints to the directory checkpoints/.

1. Test MaskTrack R-CNN on YouTube-VIS 2019, and generate a zip file for submission.

python tools/test.py \
configs/vis/masktrack_rcnn/masktrack_rcnn_r50_fpn_12e_youtubevis2019.py \
--checkpoint checkpoints/masktrack_rcnn_r50_fpn_12e_youtubevis2019_20211022_
-.194830-6cabb9le.pth \
--out RESULTS_PATH}/results.pkl \
--format-only \
--eval-options resfile_path=${RESULTS_PATH

2. Test MaskTrack R-CNN with 8 GPUs on YouTube-VIS 2019, and generate a zip file for submission.

./tools/dist_test.sh \
configs/vis/masktrack_rcnn/masktrack_rcnn_r50_fpn_12e_youtubevis2019.py \
--checkpoint checkpoints/masktrack_rcnn_r50_fpn_12e_youtubevis2019_20211022_

-.194830-6cabb9le.pth \

--out RESULTS_PATH}/results.pkl \
--format-only \
--eval-options resfile_path=${RESULTS_PATH

7.3 Training

MMTracking also provides out-of-the-box tools for training models. This section will show how to train predefined
models (under configs) on standard datasets.

By default we evaluate the model on the validation set after each epoch, you can change the evaluation interval by
adding the interval argument in the training config.

evaluation = dict(interval=12) # This evaluate the model per 12 epoch.

Important: The default learning rate in all config files is for 8 GPUs. According to the Linear Scaling Rule, you need
to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., 1r=0.01 for
8 GPUs * 1 img/gpu and 1r=0.04 for 16 GPUs * 2 imgs/gpu.

7.3.1 Training on a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

During training, log files and checkpoints will be saved to the working directory, which is specified by work_dir in
the config file or via CLI argument --work-dir.

32 Chapter 7. Run with Existing Datasets and Models

https://github.com/open-mmlab/mmtracking/tree/master/configs
https://arxiv.org/abs/1706.02677

MMTracking, Release 0.8.0

7.3.2 Training on multiple GPUs

We provide tools/dist_train. sh to launch training on multiple GPUs. The basic usage is as follows.

bash ./tools/dist_train.sh \
CONFIG_FILE} \
GPU_NUM} \
[optional arguments]

Optional arguments remain the same as stated above.

If you would like to launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train. sh to launch training jobs, you can set the port in commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

7.3.3 Training on multiple nodes

MMTracking relies on torch.distributed package for distributed training. Thus, as a basic usage, one can launch
distributed training via PyTorch’s launch utility.

7.3.4 Manage jobs with Slurm

Slurm is a good job scheduling system for computing clusters. On a cluster managed by Slurm, you can use
slurm_train. sh to spawn training jobs. It supports both single-node and multi-node training.

The basic usage is as follows.

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION JOB_NAME CONFIG_FILE WORK_DIR

You can check the source code to review full arguments and environment variables.
When using Slurm, the port option need to be set in one of the following ways:

1. Set the port through --options. This is more recommended since it does not change the original configs.

CUDA_VISIBLE DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh PARTITION JOB_NAME }..
—configl.py ${WORK_DIR} --options 'dist_params.port=29500"
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh PARTITION JOB_NAME }..
—config2.py ${WORK_DIR} --options 'dist_params.port=29501"'

2. Modify the config files to set different communication ports.

In configl.py, set

dist_params = dict(backend='nccl', port=29500)

In config2.py, set

dist_params = dict(backend='nccl', port=29501)

Then you can launch two jobs with configl.py and config2.py.

7.3. Training 33

https://pytorch.org/docs/stable/distributed.html#launch-utility
https://slurm.schedmd.com/
https://github.com/open-mmlab/mmtracking/blob/master/tools/slurm_train.sh

MMTracking, Release 0.8.0

CUDA_VISIBLE DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh PARTITION JOB_NAME }.,
—configl.py ${WORK_DIR
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh PARTITION JOB_NAME }..
—config2.py ${WORK_DIR

7.3.5 Examples of training VID model

1. Train DFF on ImageNet VID and ImageNet DET, then evaluate the bbox mAP at the last epoch.

bash ./tools/dist_train.sh ./configs/vid/dff/dff_faster_rcnn_r101_dc5_1x_
—.imagenetvid.py 8 \
--work-dir ./work_dirs/

7.3.6 Examples of training MOT model

For the training of MOT methods like SORT, DeepSORT and Tracktor, you need train a detector and a reid model
rather than directly training the MOT model itself.

1. Train a detector model

If you want to train a detector for multiple object tracking or other applications, to be compatible with MMDe-
tection, you only need to add a line of USE_MMDET=True in the config and run it with the same manner in
mmdetection. A base example can be found at faster_rcnn_r50_fpn.py.

Please NOTE that there are some differences between the base config in MMTracking and MMDetection:
detector is only a submodule of the model. For example, the config of Faster R-CNN in MMDetection follows

model = dict(
type='FasterRCNN',

)

But in MMTracking, the config follows

model = dict(
detector=dict(
type="'FasterRCNN',

)

Here is an example to train a detector model on MOT17, and evaluate the bbox mAP after each epoch.

bash ./tools/dist_train.sh ./configs/det/faster-rcnn_r50_fpn_4e_motl7-half.py 8 \
--work-dir ./work_dirs/

. Train a ReID model

You may want to train a ReID model for multiple object tracking or other applications. We support ReID model
training in MMTracking, which is built upon MMClassification.

Here is an example to train a reid model on MOT17, then evaluate the mAP after each epoch.

34

Chapter 7. Run with Existing Datasets and Models

https://github.com/open-mmlab/mmtracking/blob/master/configs/_base_/models/faster_rcnn_r50_fpn.py
https://github.com/open-mmlab/mmclassification

MMTracking, Release 0.8.0

bash ./tools/dist_train.sh ./configs/reid/resnet50_b32x8_MOT17.py 8 \
--work-dir ./work_dirs/

3. After training a detector and a ReID model, you can refer to Examples of testing MOT model to test your multi-
object tracker.

7.3.7 Examples of training SOT model

1. Train SiameseRPN++ on COCO, ImageNet VID and ImageNet DET, then evaluate the success, precision and
normed precision from the 10-th epoch to 20-th epoch.

bash ./tools/dist_train.sh ./configs/sot/siamese_rpn/siamese_rpn_r50_1x_lasot.py 8 \
--work-dir ./work_dirs/

7.3.8 Examples of training VIS model

1. Train MaskTrack R-CNN on YouTube-VIS 2019 dataset. There are no evaluation results during training, since
the annotations of validation dataset in YouTube-VIS are not provided.

bash ./tools/dist_train.sh ./configs/vis/masktrack_rcnn/masktrack_rcnn_r50_fpn_12e_
—youtubevis2019.py 8 \
--work-dir ./work_dirs/

7.3. Training 35

https://mmtracking.readthedocs.io/en/latest/quick_run.html#examples-of-testing-mot-model

MMTracking, Release 0.8.0

36

Chapter 7. Run with Existing Datasets and Models

CHAPTER
EIGHT

RUN WITH CUSTOMIZED DATASETS AND MODELS

In this note, you will know how to inference, test, and train with customized datasets and models.
The basic steps are as below:

1. Prepare the customized dataset (if applicable)

2. Prepare the customized model (if applicable)

3. Prepare a config

4. Train a new model

5. Test and inference the new model

8.1 1. Prepare the customized dataset

There are two ways to support a new dataset in MMTracking:
Reorganize the dataset into CocoVID format. Implement a new dataset.
Usually we recommend to use the first method which is usually easier than the second.

Details for customizing datasets are provided in tutorials/customize_dataset.md.

8.2 2. Prepare the customized model

We provide instructions for cutomizing models of different tasks.
¢ tutorials/customize vid_model.md
e tutorials/customize_mot_model.md

e tutorials/customize_sot_model.md

37

https://mmtracking.readthedocs.io/en/latest/tutorials/customize_dataset.html
https://mmtracking.readthedocs.io/en/latest/tutorials/customize_vid_model.html
https://mmtracking.readthedocs.io/en/latest/tutorials/customize_mot_model.html
https://mmtracking.readthedocs.io/en/latest/tutorials/customize_sot_model.html

MMTracking, Release 0.8.0

8.3 3. Prepare a config

The next step is to prepare a config thus the dataset or the model can be successfully loaded. More details about the
config system are provided at tutorials/config.md.

8.4 4. Train a new model

To train a model with the new config, you can simply run

python tools/train.py ${NEW_CONFIG_FILE

For more detailed usages, please refer to the training instructions above.

8.5 5. Test and inference the new model

To test the trained model, you can simply run

python tools/test.py ${NEW_CONFIG_FILE TRAINED_MODEL} --eval bbox track

For more detailed usages, please refer to the testing or inference instructions above.

38 Chapter 8. Run with Customized Datasets and Models

https://mmtracking.readthedocs.io/en/latest/tutorials/config.html

CHAPTER
NINE

LEARN ABOUT CONFIGS

We use python files as our config system. You can find all the provided configs under $MMTracking/configs.

We incorporate modular and inheritance design into our config system, which is convenient to conduct various exper-
iments. If you wish to inspect the config file, you may run python tools/print_config.py /PATH/TO/CONFIG
to see the complete config.

9.1 Modify config through script arguments

When submitting jobs using “tools/train.py” or “tools/test.py”, you may specify --cfg-options to in-place modify
the config.

» Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config. For exam-
ple, --cfg-options model.detector.backbone.norm_eval=False changes the all BN modules in model
backbones to train mode.

» Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the testing pipeline data.test.
pipeline is normally a list e.g. [dict(type='LoadImageFromFile'), ...]. If you want to change
'LoadImageFromFile' to 'LoadImageFromWebcam' in the pipeline, you may specify --cfg-options
data.test.pipeline.®.type=LoadImageFromWebcam.

 Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[('train',
1)]. If you want to change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]".
Note that the quotation mark “ is necessary to support list/tuple data types, and that NO white space is allowed
inside the quotation marks in the specified value.

9.2 Config File Structure

There are 3 basic component types under config/_base_, dataset, model, default_runtime. Many methods could be
easily constructed with one of each like DFF, FGFA, SELSA, SORT, DeepSORT. The configs that are composed by
components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should
inherit from the primitive config. In this way, the maximum of inheritance level is 3.

39

MMTracking, Release 0.8.0

For easy understanding, we recommend contributors to inherit from exiting methods. For example, if some modification
is made base on Faster R-CNN, user may first inherit the basic Faster R-CNN structure by specifying _base_ = ../
../_base_/models/faster_rcnn_r50_dc5.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may
create a folder xxx_rcnn under configs,

Please refer to mmcv for detailed documentation.

9.3 Config Name Style

We follow the below style to name config files. Contributors are advised to follow the same style.

{model}_[model setting]_{backbone}_ {neck}_ [norm setting] [misc]_[gpu x batch_per_gpu]_
—{schedule}_{dataset}

{xxx} is required field and [yyy] is optional.
* {model}: model type like dff, tracktor, siamese_rpn, etc.
e [model setting]: specific setting for some model, like faster_rcnn for dff,tracktor, etc.
* {backbone}: backbone type like r50 (ResNet-50), x101 (ResNeXt-101).
e {neck}: neck type like fpn, c5.

e [norm_setting]: bn (Batch Normalization) is used unless specified, other norm layer type could be gn (Group
Normalization), syncbn (Synchronized Batch Normalization). gn-head/gn-neck indicates GN is applied in
head/neck only, while gn-all means GN is applied in the entire model, e.g. backbone, neck, head.

* [misc]: miscellaneous setting/plugins of model, e.g. dconv, gcb, attention, albu, mstrain.
* [gpu x batch_per_gpu]: GPUs and samples per GPU, 8x2 is used by default.
* {schedule}: training schedule, options is 4e, 7e, 20e, etc. 20e denotes 20 epochs.

¢ {dataset}: dataset like imagenetvid, mot17, lasot.

9.4 Detailed analysis of Config File

Please refer to the corresponding page for config file structure of different tasks.
Video Object Detection

Multi Object Tracking

Single Object Tracking

40 Chapter 9. Learn about Configs

https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#config
https://mmtracking.readthedocs.io/en/latest/tutorials/config_vid.html
https://mmtracking.readthedocs.io/en/latest/tutorials/config_mot.html
https://mmtracking.readthedocs.io/en/latest/tutorials/config_sot.html

MMTracking, Release 0.8.0

9.5 FAQ

9.5.1 Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of fields in base configs. You may refer to mmcv for simple
illustration.

9.5.2 Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets. It’s
worth noting that when modifying intermediate variables in the children configs, user need to pass the intermediate
variables into corresponding fields again. For example, we would like to use testing strategy of adaptive stride to test
a SELSA. ref_img_sampler is intermediate variable we would like modify.

base = ['./selsa_faster_rcnn_r50_dc5_1x_imagenetvid.py']

dataset settings
ref_img_sampler = dict(
delete=True,
num_ref_imgs=14,
frame_range=[-7, 7],
method="test_with_adaptive_stride"')
data = dict(
val=dict(
ref_img_sampler=ref_img_sampler),
test=dict(
ref_img_sampler=ref_img_sampler))

We first define the new ref_img_sampler and pass them into data.

9.5. FAQ 41

https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#inherit-from-base-config-with-ignored-fields

MMTracking, Release 0.8.0

42

Chapter 9. Learn about Configs

CHAPTER
TEN

CUSTOMIZE DATASETS

To customize a new dataset, you can convert them to the existing CocoVID style or implement a totally new dataset.
In MMTracking, we recommend to convert the data into CocoVID style and do the conversion offline, thus you can
use the CocoVideoDataset directly. In this case, you only need to modify the config’s data annotation paths and the
classes.

10.1 Convert the dataset into CocoVID style

10.1.1 The CocoVID annotation file

The annotation json files in CocoVID style has the following necessary keys:

* videos: contains a list of videos. Each video is a dictionary with keys name, id. Optional keys include fps,
width, and height.

e images: contains a list of images. Each image is a dictionary with keys file_name, height, width, id,
frame_id, and video_id. Note that the frame_id is 0-index based.

e annotations: contains a list of instance annotations. Each annotation is a dictionary with keys bbox, area,
id, category_id, instance_id, image_id and video_id. The instance_id is only required for tracking.

* categories: contains a list of categories. Each category is a dictionary with keys id and name.
A simple example is presented at here.

The examples of converting existing datasets are presented at here.

10.1.2 Modify the config

After the data pre-processing, the users need to further modify the config files to use the dataset. Here we show an
example of using a custom dataset of 5 classes, assuming it is also in CocoVID format.

In configs/my_custom_config.py:

dataset settings
dataset_type = 'CocoVideoDataset'
classes = ('a', 'b', 'c', 'd', 'e")

data = dict(
samples_per_gpu=2,
workers_per_gpu=2,

(continues on next page)

43

https://github.com/open-mmlab/mmtracking/blob/master/tests/data/demo_cocovid_data/ann.json
https://github.com/open-mmlab/mmtracking/tree/master/tools/convert_datasets/

MMTracking, Release 0.8.0

(continued from previous page)

train=dict(
type=dataset_type,
classes=classes,
ann_file="path/to/your/train/data',
L),

val=dict(
type=dataset_type,
classes=classes,
ann_file="path/to/your/val/data’,
L),

test=dict(
type=dataset_type,
classes=classes,
ann_file="path/to/your/test/data',
..2))

10.2 Using dataset wrappers

MMTracking also supports some dataset wrappers to mix the dataset or modify the dataset distribution for training.
Currently it supports to three dataset wrappers as below:

* RepeatDataset: simply repeat the whole dataset.
e ClassBalancedDataset: repeat dataset in a class balanced manner.

e ConcatDataset: concat datasets.

10.2.1 Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset. For example, suppose the original dataset is Dataset_A, to
repeat it, the config looks like the following

dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict(# This is the original config of Dataset_A
type="'Dataset_A"',

pipeline=train_pipeline

44 Chapter 10. Customize Datasets

MMTracking, Release 0.8.0

10.2.2 Class balanced dataset

We use ClassBalancedDataset as wrapper to repeat the dataset based on category frequency. The dataset to repeat
needs to instantiate function self.get_cat_ids(idx) to support ClassBalancedDataset. For example, to repeat
Dataset_A with oversample_thr=1e-3, the config looks like the following

dataset_A_train = dict(
type="'ClassBalancedDataset',
oversample_thr=1e-3,
dataset=dict(# This is the original config of Dataset_A
type='Dataset_A",

pipeline=train_pipeline

10.2.3 Concatenate dataset

There are three ways to concatenate the dataset.

1. If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate
the dataset configs like the following.

dataset_A_train = dict(
type='Dataset_A",
ann_file = ['anno_file_1', 'anno_file_2'],
pipeline=train_pipeline

If the concatenated dataset is used for test or evaluation, this manner supports to evaluate each dataset separately.
To test the concatenated datasets as a whole, you can set separate_eval=False as below.

dataset_A_train = dict(
type='Dataset_A",
ann_file = ['anno_file_1', 'anno_file_2'],
separate_eval=False,
pipeline=train_pipeline

2. In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.

dataset_A_train = dict(Q)
dataset_B_train = dict()

data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train = [
dataset_A_train,
dataset_B_train
1,
val = dataset_A_val,
test = dataset_A_test
)

10.2. Using dataset wrappers 45

MMTracking, Release 0.8.0

If the concatenated dataset is used for test or evaluation, this manner also supports to evaluate each dataset
separately.

3. We also support to define ConcatDataset explicitly as the following.

dataset_A_val = dict(Q)
dataset_B_val = dict()

data = dict(

imgs_per_gpu=2,

workers_per_gpu=2,

train=dataset_A_train,

val=dict(
type="'ConcatDataset',
datasets=[dataset_A_val, dataset_B_val],
separate_eval=False))

This manner allows users to evaluate all the datasets as a single one by setting separate_eval=False.
Note:

1. The option separate_eval=False assumes the datasets use self.data_infos during evaluation. Therefore,
CocoVID datasets do not support this behavior since CocoVID datasets do not fully rely on self.data_infos
for evaluation. Combining different types of datasets and evaluating them as a whole is not tested thus is not
suggested.

2. Evaluating ClassBalancedDataset and RepeatDataset is not supported thus evaluating concatenated
datasets of these types is also not supported.

A more complex example that repeats Dataset_A and Dataset_B by N and M times, respectively, and then concate-
nates the repeated datasets is as the following.

dataset_A_train = dict(
type="'RepeatDataset’,
times=N,
dataset=dict(
type='Dataset_A',

pipeline=train_pipeline

)
dataset_A_val = dict(

pipeline=test_pipeline
)
dataset_A_test = dict(

pipeline=test_pipeline
)
dataset_B_train = dict(
type="'RepeatDataset',
times=M,
dataset=dict(
type='Dataset_B',

pipeline=train_pipeline

(continues on next page)

46 Chapter 10. Customize Datasets

MMTracking, Release 0.8.0

(continued from previous page)

)
)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train = [
dataset_A_train,
dataset_B_train
1,
val = dataset_A_val,
test = dataset_A_test

10.3 Subset of existing datasets

With existing dataset types, we can modify the class names of them to train subset of the annotations. For example, if
you want to train only three classes of the current dataset, you can modify the classes of dataset. The dataset will filter
out the ground truth boxes of other classes automatically.

classes = ('person', 'bicycle', 'car'")

data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))

MMTracking also supports to read the classes from a file, which is common in real applications. For example, assume
the classes. txt contains the name of classes as the following.

person
bicycle
car

Users can set the classes as a file path, the dataset will load it and convert it to a list automatically.

classes = 'path/to/classes.txt'’

data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))

10.3. Subset of existing datasets 47

MMTracking, Release 0.8.0

48

Chapter 10. Customize Datasets

CHAPTER
ELEVEN

CUSTOMIZE DATA PIPELINES

There are two types of data pipelines in MMTracking:
* Single image, which is consistent with MMDetection in most cases.

* Pair-wise / multiple images.

11.1 Data pipeline for a single image

For a single image, you may refer to the tutorial in MMDetection.
There are several differences in MMTracking:

* We implement VideoCollect which is similar to Collect in MMDetection but is more compatible with the
video perception tasks. For example, the meta keys frame_id and is_video_data are collected by default.

11.2 Data pipeline for multiple images

In some cases, we may need to process multiple images simultaneously. This is basically because we need to sample
reference images of the key image in the same video to facilitate the training or inference process.

Please firstly take a look at the case of a single images above because the case of multiple images is heavily rely on it.
We explain the details of the pipeline below.

11.2.1 1. Sample reference images

We sample and load the annotations of the reference images once we get the annotations of the key image.

Take CocoVideoDataset as an example, there is a function sample_ref_img to sample and load the annotations of
the reference images.

from mmdet.datasets import CocoDataset
class CocoVideoDataset(CocoDataset):

def __init__(self,
ref_img_sampler=None,

*args,
**kwargs) :
super().__init__(*args, **kwargs)

(continues on next page)

49

https://mmdetection.readthedocs.io/en/latest/tutorials/data_pipeline.html

MMTracking, Release 0.8.0

(continued from previous page)

self.ref_img_sampler = ref_img_sampler

def ref_img_sampling(self, **kwargs):
pass

def prepare_data(self, idx):
img_info = self.data_infos[idx]
if self.ref_img_sampler is not None:
img_infos = self.ref_img_sampling(img_info, **self.ref_img_sampler)

In this case, the loaded annotations is no longer a dict but 1ist[dict] that contains the annotations for the key and
reference images. The first item of the list indicates the annotations of the key image.

11.2.2 2. Sequentially process and collect the data

In this step, we apply the transformations and then collected the information of the images.

In contrast to the pipeline of a single image that take a dictionary as the input and also output a dictionary for the next
transformation, the sequential pipelines take a list of dictionaries as the input and also output a list of dictionaries for
the next transformation.

These sequential pipelines are generally inherited from the pipeline in MMDetection but process the list in a loop.

from mmdet.datasets.builder import PIPELINES
from mmdet.datasets.pipelines import LoadImageFromFile

@PIPELINES.register_module()
class LoadMultiImagesFromFile(LoadImageFromFile):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

def __call__(self, results):
outs = []
for _results in results:
_results = super().__call__(_results)
outs.append(_results)
return outs

Sometimes you may need to add a parameter share_params to decide whether share the random seed of the transfor-
mation on these images.

50 Chapter 11. Customize Data Pipelines

MMTracking, Release 0.8.0

11.2.3 3. Concat the reference images (if applicable)

If there are more than one reference image, we implement ConcatVideoReferences to collect the reference images
to a dictionary. The length of the list is 2 after the process.

11.2.4 4. Format the output to a dictionary

In the end, we implement SeqDefaultFormatBundle to convert the list to a dictionary as the input of the model
forward.

Here is an example of the data pipeline:

train_pipeline = [
dict(type='LoadMultiImagesFromFile'),
dict(type='SeglLoadAnnotations', with_bbox=True, with_track=True),
dict(type="'SeqgResize', img_scale=(1000, 600), keep_ratio=True),
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.5),

dict(type='SegNormalize', **img_norm_cfg),
dict(type='SeqgPad', size_divisor=16),
dict(

type="'VideoCollect"',

keys=['img', 'gt_bboxes', 'gt_labels', 'gt_instance_ids']),
dict(type='ConcatVideoReferences'),
dict(type='SegDefaultFormatBundle', ref_prefix='ref')

11.2. Data pipeline for multiple images 51

MMTracking, Release 0.8.0

52

Chapter 11. Customize Data Pipelines

CHAPTER
TWELVE

CUSTOMIZE VID MODELS

We basically categorize model components into 3 types.
¢ detector: usually a detector to detect objects from an image, e.g., Faster R-CNN.
* motion: the component to compute motion information between two images, e.g., FlowNetSimple.

* aggregator: the component for aggregating features from multi images, e.g., EmbedAggregator.

12.1 Add a new detector

Please refer to tutorial in mmdetection for developping a new detector.

12.2 Add a new motion model

12.2.1 1. Define a motion model (e.g. MyFlowNet)

Create a new file nmtrack/models/motion/my_flownet.py.

from mmcv.runner import BaseModule
from ..builder import MOTION

@MOTION.register_module()
class MyFlowNet(BaseModule):

def __init__(self,
argl,
arg2):
pass

def forward(self, inputs):
implementation is ignored
pass

53

https://mmdetection.readthedocs.io/en/latest/tutorials/customize_models.html

MMTracking, Release 0.8.0

12.2.2 2. Import the module

You can either add the following line to mmtrack/models/motion/__init__.py,

from .my_flownet import MyFlowNet

or alternatively add

custom_imports = dict(
imports=['mmtrack.models.motion.my_flownet.py'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

12.2.3 3. Modify the config file

motion=dict(
type="MyFlowNet',
argl=xxx,
arg2=xxx)

12.3 Add a new aggregator

12.3.1 1. Define a aggregator (e.g. MyAggregator)

Create a new file nmtrack/models/aggregators/my_aggregator.py

from mmcv.runner import BaseModule
from ..builder import AGGREGATORS

@AGGREGATORS . register_module()
class MyAggregator(BaseModule):

def __init__(self,
argl,
arg2):
pass

def forward(self, inputs):
implementation is ignored
pass

54 Chapter 12

. Customize VID Models

MMTracking, Release 0.8.0

12.3.2 2. Import the module

You can either add the following line to mmtrack/models/aggregators/__init__.py,

from .my_aggregator import MyAggregator

or alternatively add

custom_imports = dict(
imports=['mmtrack.models.aggregators.my_aggregator.py'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

12.3.3 3. Modify the config file

aggregator=dict(
type="'MyAggregator',
argl=xxx,
arg2=xxx)

12.3. Add a new aggregator

55

MMTracking, Release 0.8.0

56

Chapter 12. Customize VID Models

CHAPTER
THIRTEEN

CUSTOMIZE MOT MODELS

We basically categorize model components into 5 types.

* tracker: the component that associate the objects across the video with the cues extracted by the components
below.

* detector: usually a detector to detect objects from the input image, e.g., Faster R-CNN.
* motion: the component to compute motion information between consecutive frames, e.g., KalmanFilter.

e reid: usually an independent RelD model to extract the feature embeddings from the cropped image, e.g.,
BaseRelD.

* track_head: the component to extract tracking cues but share the same backbone with the detector, e.g., a em-
bedding head or a regression head.

13.1 Add a new tracker

13.1.1 1. Define a tracker (e.g. MyTracker)

Create a new file nmtrack/models/mot/trackers/my_tracker.py.

We implement a BaseTracker that provide basic APIs to maintain the tracks across the video. We recommend to
inherit the new tracker from it. The users may refer to the documentations of BaseTracker for the details.

from mmtrack.models import TRACKERS
from .base_tracker import BaseTracker

@TRACKERS .register_module()
class MyTracker(BaseTracker):

def __init__(self,

argl,

arg2,

*args,

**kwargs) :
super().__init__(*args, **kwargs)

pass

def track(self, inputs):
implementation is ignored
pass

57

https://github.com/open-mmlab/mmtracking/tree/master/mmtrack/models/mot/trackers/base_tracker.py

MMTracking, Release 0.8.0

13.1.2 2. Import the module

You can either add the following line to mmtrack/models/mot/trackers/__init__.py,

from .my_tracker import MyTracker

or alternatively add

custom_imports = dict(
imports=['mmtrack.models.mot.trackers.my_tracker.py'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

13.1.3 3. Modify the config file

tracker=dict(
type="'MyTracker',
argl=xxx,
arg2=xxx)

13.2 Add a new detector

Please refer to tutorial in mmdetection for developping a new detector.

13.3 Add a new motion model

13.3.1 1. Define a motion model (e.g. MyFlowNet)

Create a new file nmtrack/models/motion/my_flownet.py.

You can inherit the motion model from BaselModule in mmcv. runner if it is a deep learning module, and from object

if not.

from mmcv.runner import BaseModule
from ..builder import MOTION

@MOTION.register_module()
class MyFlowNet(BaseModule):

def __init__(self,
argl,
arg2):
pass

def forward(self, inputs):
implementation is ignored
pass

58 Chapter 13. Customize MOT Models

https://mmdetection.readthedocs.io/en/latest/tutorials/customize_models.html

MMTracking, Release 0.8.0

13.3.2 2. Import the module

You can either add the following line to mmtrack/models/motion/__init__.py,

from .my_flownet import MyFlowNet

or alternatively add

custom_imports = dict(
imports=['mmtrack.models.motion.my_flownet.py'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

13.3.3 3. Modify the config file

motion=dict(
type="MyFlowNet',
argl=xxx,
arg2=xxx)

13.4 Add a new reid model

13.4.1 1. Define a reid model (e.g. MyRelD)

Create a new file nmtrack/models/reid/my_reid.py.

from mmcv.runner import BaseModule
from ..builder import REID

@REID.register_module()
class MyReID(BaseModule):

def __init__(self,
argl,
arg2):
pass

def forward(self, inputs):
implementation is ignored
pass

13.4. Add a new reid model 59

MMTracking, Release 0.8.0

13.4.2 2. Import the module

You can either add the following line to mmtrack/models/reid/__init__.py,

from .my_reid import MyReID

or alternatively add

custom_imports = dict(
imports=['mmtrack.models.reid.my_reid.py'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

13.4.3 3. Modify the config file

reid=dict(
type="MyReID',
argl=xxx,
arg2=xxx)

13.5 Add a new track head

13.5.1 1. Define a head (e.g. MyHead)

Create a new file nmtrack/models/track_heads/my_head.py

from mmcv.runner import BaseModule
from mmdet.models import HEADS

@HEADS .register_module()
class MyHead(BaseModule):

def __init__(self,
argl,
arg2):
pass

def forward(self, inputs):
implementation is ignored
pass

60 Chapter 13

. Customize MOT Models

MMTracking, Release 0.8.0

13.5.2 2. Import the module

You can either add the following line to mmtrack/models/track_heads/__init__.py,

from .my_head import MyHead

or alternatively add

custom_imports = dict(
imports=['mmtrack.models.track_heads.my_head.py'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

13.5.3 3. Modify the config file

track_head=dict(
type="MyHead',
argl=xxx,
arg2=xxx)

13.6 Add a new loss

13.6.1 1. define a loss (e.g. MyLoss)

Assume you want to add a new loss as MyLoss, for bounding box regression. To add a new loss function, the users
need implement it in mmtrack/models/losses/my_loss.py. The decorator weighted_loss enable the loss to be
weighted for each element.

import torch
import torch.nn as nn

from mmdet.models import LOSSES, weighted_loss

@weighted_loss

def my_loss(pred, target):
assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss

@LOSSES .register_module()
class MyLoss(nn.Module):

def __init__(self, reduction='mean', loss_weight=1.0):
super (MyLoss, self).__init__(Q)
self.reduction = reduction
self.loss_weight = loss_weight

def forward(self,
pred,

(continues on next page)

13.6. Add a new loss 61

MMTracking, Release 0.8.0

(continued from previous page)

target,
weight=None,
avg_factor=None,
reduction_override=None):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * my_loss(
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox

13.6.2 2. Import the module

Then the users need to add it in the mmtrack/models/losses/__init__.py.

from .my_loss import MyLoss, my_loss

Alternatively, you can add

custom_imports=dict(
imports=['mmtrack.models.losses.my_loss'],
allow_failed_imports=False)

to the config file and achieve the same goal.

13.6.3 3. Modify the config file

To use it, modify the 1loss_xxx field. Since MyLoss is for regression, you need to modify the 1oss_bbox field in the
head.

loss_bbox=dict(type="MyLoss', loss_weight=1.0))

62 Chapter 13. Customize MOT Models

CHAPTER
FOURTEEN

CUSTOMIZE SOT MODELS

We basically categorize model components into 4 types.
* backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet.
* neck: the component between backbones and heads, e.g., ChannelMapper, FPN.
* head: the component for specific tasks, e.g., tracking bbox prediction.

* loss: the component in head for calculating losses, e.g., FocalL.oss, L1Loss.
14.1 Add a new backbone
Here we show how to develop new components with an example of MobileNet.

14.1.1 1. Define a new backbone (e.g. MobileNet)

Create a new file nmtrack/models/backbones/mobilenet.py.

import torch.nn as nn
from mmcv.runner import BaseModule

from mmdet.models.builder import BACKBONES
@BACKBONES . register_module()
class MobileNet (BaseModule):

def __init__(self, argl, arg2, *args, **kwargs):
pass

def forward(self, x): # should return a tuple
pass

63

MMTracking, Release 0.8.0

14.1.2 2. Import the module

You can either add the following line to mmtrack/models/backbones/__init__.py

from .mobilenet import MobileNet

or alternatively add

custom_imports = dict(
imports=['mmtrack.models.backbones.mobilenet'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

14.1.3 3. Use the backbone in your config file

model = dict(

backbone=dict(
type="MobileNet',
argl=xxx,
arg2=xxx),

14.2 Add a new neck

14.2.1 1. Define a neck (e.g. MyFPN)

Create a new file nmtrack/models/necks/my_£fpn.py

from mmcv.runner import BaseModule
from mmdet.models.builder import NECKS

@NECKS.register_module()
class MyFPN(BaseModule):

def __init__(self, argl, arg2, *args, **kwargs):
pass

def forward(self, inputs):
implementation is ignored
pass

64 Chapter 14. Customize SOT Models

MMTracking, Release 0.8.0

14.2.2 2. Import the module

You can either add the following line to mmtrack/models/necks/__init__.py,

from .my_£fpn import MyFPN

or alternatively add

custom_imports = dict(
imports=['mmtrack.models.necks.my_fpn.py'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

14.2.3 3. Modify the config file

neck=dict(
type="MyFPN"',
argl=xxx,
arg2=xxx),

14.3 Add a new head

14.3.1 1. Define a head (e.g. MyHead)

Create a new file nmtrack/models/track_heads/my_head.py

from mmcv.runner import BaseModule
from mmdet.models import HEADS

@HEADS .register_module()
class MyHead(BaseModule):

def __init__(self, argl, arg2, *args, **kwargs):
pass

def forward(self, inputs):
implementation is ignored
pass

14.3. Add a new head 65

MMTracking, Release 0.8.0

14.3.2 2. Import the module

You can either add the following line to mmtrack/models/track_heads/__init__.py,

from .my_head import MyHead

or alternatively add

custom_imports = dict(
imports=['mmtrack.models.track_heads.my_head.py'],
allow_failed_imports=False)

to the config file and avoid modifying the original code.

14.3.3 3. Modify the config file

track_head=dict(
type="MyHead',
argl=xxx,
arg2=xxx)

14.4 Add a new loss

Please refer to Add a new loss for developping a new loss.

66

Chapter 14. Customize SOT Models

https://mmtracking.readthedocs.io/en/latest/tutorials/customize_mot_model.html#add-a-new-loss

CHAPTER
FIFTEEN

CUSTOMIZE RUNTIME SETTINGS

15.1 Customize optimization settings

15.1.1 Customize optimizer supported by Pytorch

We already support to use all the optimizers implemented by PyTorch, and the only modification is to change the
optimizer field of config files. For example, if you want to use ADAM, the modification could be as the following.

optimizer = dict(type="Adam', 1lr=0.0003, weight_decay=0.0001)

To modify the learning rate of the model, the users only need to modify the 1r in the config of optimizer. The users
can directly set arguments following the API doc of PyTorch.

15.1.2 Customize self-implemented optimizer

1. Define a new optimizer

A customized optimizer could be defined as following.

Assume you want to add a optimizer named MyOptimizer, which has arguments a, b, and c. You need to create a new
file named mmtrack/core/optimizer/my_optimizer.py.

from torch.optim import Optimizer
from mmcv.runner.optimizer import OPTIMIZERS

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

def __init__(self, a, b, ©)

67

https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim

MMTracking, Release 0.8.0

2. Add the optimizer to registry
To find the above module defined above, this module should be imported into the main namespace at first. There are
two options to achieve it.

* Modify mmtrack/core/optimizer/__init__.py to import it.

The newly defined module should be imported inmmtrack/core/optimizer/__init__.py so that the registry
will find the new module and add it:

from .my_optimizer import MyOptimizer

» Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmtrack.core.optimizer.my_optimizer.py'], allow_
—.failed_imports=False)

The module mmtrack.core.optimizer.my_optimizer.MyOptimizer will be imported at the beginning of the
program and the class MyOptimizer is then automatically registered. Note that only the package containing the class
MyOptimizer should be imported. mmtrack.core.optimizer.my_optimizer.MyOptimizer cannot be imported
directly.

Actually users can use a totally different file directory structure using this importing method, as long as the module
root can be located in PYTHONPATH.

3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field of config files. In the configs, the optimizers are defined by the
field optimizer like the following:

optimizer = dict(type="'SGD', 1lr=0.02, momentum=0.9, weight_decay=0.0001)

To use your own optimizer, the field can be changed to

optimizer = dict(type="MyOptimizer', a=a_value, b=b_value, c=c_value)

15.1.3 Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.
The users can do those fine-grained parameter tuning through customizing optimizer constructor.

from mmcv.utils import build_from_cfg
from mmcv.runner.optimizer import OPTIMIZER_BUILDERS, OPTIMIZERS

from mmtrack.utils import get_root_logger
from .my_optimizer import MyOptimizer

@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor(object):
def __init__(self, optimizer_cfg, paramwise_cfg=None):

def __call__(self, model):

(continues on next page)

68 Chapter 15. Customize Runtime Settings

MMTracking, Release 0.8.0

(continued from previous page)

return my_optimizer

The default optimizer constructor is implemented here, which could also serve as a template for new optimizer con-
structor.

15.1.4 Additional settings

Tricks not implemented by the optimizer should be implemented through optimizer constructor (e.g., set parameter-
wise learning rates) or hooks. We list some common settings that could stabilize the training or accelerate the training.
Feel free to create PR, issue for more settings.

» Use gradient clip to stabilize training: Some models need gradient clip to clip the gradients to stabilize the
training process. An example is as below:

optimizer_config = dict(
delete=True, grad_clip=dict(max_norm=35, norm_type=2))

If your config inherits the base config which already sets the optimizer_config, you might need
delete=True to override the unnecessary settings. See the config documentation for more details.

* Use momentum schedule to accelerate model convergence: We support momentum scheduler to modify
model’s momentum according to learning rate, which could make the model converge in a faster way. Mo-
mentum scheduler is usually used with LR scheduler, for example, the following config is used in 3D detection
to accelerate convergence. For more details, please refer to the implementation of CyclicLrUpdater and Cyclic-
MomentumUpdater.

lr_config = dict(
policy="cyclic',
target_ratio=(10, le-4),
cyclic_times=1,
step_ratio_up=0.4,

)

momentum_config = dict(
policy="cyclic',
target_ratio=(0.85 / 0.95, 1),
cyclic_times=1,
step_ratio_up=0.4,

15.2 Customize training schedules

We support many other learning rate schedule here, such as CosineAnnealing and Poly schedule. Here are some
examples

* Poly schedule:

lr_config = dict(policy="poly', power=0.9, min_lr=1e-4, by_epoch=False)

* ConsineAnnealing schedule:

15.2. Customize training schedules 69

https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.DefaultOptimizerConstructor
https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#inherit-from-base-config-with-ignored-fields
https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327
https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130
https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py

MMTracking, Release 0.8.0

lr_config = dict(
policy="CosineAnnealing',
warmup="'1linear',
warmup_iters=1000,
warmup_ratio=1.0 / 10,
min_lr_ratio=1e-5)

15.3 Customize workflow

Workflow is a list of (phase, epochs) to specify the running order and epochs. By default it is set to be

workflow = [('train', 1)]

which means running 1 epoch for training. Sometimes user may want to check some metrics (e.g. loss, accuracy) about
the model on the validate set. In such case, we can set the workflow as

[("train', 1), ('val', 1)]

so that 1 epoch for training and 1 epoch for validation will be run iteratively.
Note:
1. The parameters of model will not be updated during val epoch.

2. Keyword total_epochs in the config only controls the number of training epochs and will not affect the vali-
dation workflow.

3. Workflows [('train', 1), ('val', 1)Jand [('train', 1)] will not change the behavior of EvalHook
because EvalHook is called by after_train_epoch and validation workflow only affect hooks that are called
through after_val_epoch. Therefore, the only difference between [('train', 1), ('val', 1)] and
[("train', 1)] is that the runner will calculate losses on validation set after each training epoch.

15.4 Customize hooks

15.4.1 Customize self-implemented hooks

1. Implement a new hook

There are some occasions when the users might need to implement a new hook. MMTracking supports customized
hooks in training. Thus the users could implement a hook directly in mmtrack or their mmtrack-based codebases and
use the hook by only modifying the config in training. Here we give an example of creating a new hook in mmtrack
and using it in training.

from mmcv.runner import HOOKS, Hook
@HOOKS .register_module()
class MyHook(Hook):

def __init__(self, a, b):
pass

(continues on next page)

70 Chapter 15. Customize Runtime Settings

MMTracking, Release 0.8.0

(continued from previous page)

def before_run(self, runner):
pass

def after_run(self, runner):
pass

def before_epoch(self, runner):
pass

def after_epoch(self, runner):
pass

def before_iter(self, runner):
pass

def after_iter(self, runner):
pass

Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training
in before_run, after_run, before_epoch, after_epoch, before_iter, and after_iter.

2. Register the new hook
Then we need to make MyHook imported. Assuming the file is in mmtrack/core/utils/my_hook.py there are two
ways to do that:

¢ Modify mmtrack/core/utils/__init__.py to import it.

The newly defined module should be imported in mmtrack/core/utils/__init__.py so that the registry will
find the new module and add it:

from .my_hook import MyHook

* Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmtrack.core.utils.my_hook'], allow_failed_
—.imports=False)

3. Modify the config

custom_hooks = [
dict(type="MyHook', a=a_value, b=b_value)

You can also set the priority of the hook by adding key priority to 'NORMAL' or '"HIGHEST' as below

custom_hooks = [
dict(type="'MyHook', a=a_value, b=b_value, priority='NORMAL")

By default the hook’s priority is set as NORMAL during registration.

15.4. Customize hooks 71

MMTracking, Release 0.8.0

15.4.2 Use hooks implemented in MMCV

If the hook is already implemented in MMCYV, you can directly modify the config to use the hook as below

custom_hooks = [
dict(type="'MyHook', a=a_value, b=b_value, priority='NORMAL")
]

15.4.3 Modify default runtime hooks

There are some common hooks that are not registered through custom_hooks, they are
* log_config
* checkpoint_config
e evaluation
* Ir_config
* optimizer_config
* momentum_config

In those hooks, only the logger hook has the VERY_LOW priority, others’ priority are NORMAL. The above-mentioned
tutorials already covers how to modify optimizer_config, momentum_config, and 1r_config. Here we reveals
how what we can do with log_config, checkpoint_config, and evaluation.

Checkpoint hook

The MMCYV runner will use checkpoint_config to initialize CheckpointHook.

checkpoint_config = dict(interval=1)

The users could set max_keep_ckpts to only save only small number of checkpoints or decide whether to store state
dict of optimizer by save_optimizer. More details of the arguments are here

Log hook

The 1og_config wraps multiple logger hooks and enables to set intervals. Now MMCV supports WandbLoggerHook,
M1flowLoggerHook, and TensorboardLoggerHook. The detail usages can be found in the doc.

log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook"),
dict(type='TensorboardLoggerHook")
D

72 Chapter 15. Customize Runtime Settings

https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook
https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook
https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook

MMTracking, Release 0.8.0

Evaluation hook

The config of evaluation will be used to initialize the EvalHook. Except keys like interval, start and so on,
other arguments such as metric will be passed to the dataset.evaluate()

evaluation = dict(interval=1, metric='bbox")

We provide lots of useful tools under the tools/ directory.

15.4. Customize hooks 73

https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.EvalHook

MMTracking, Release 0.8.0

74

Chapter 15. Customize Runtime Settings

CHAPTER
SIXTEEN

MOT TEST-TIME PARAMETER SEARCH

tools/analysis/mot/mot_param_search.py can search the parameters of the tracker in MOT models. It is
used as the same manner with tools/test.py but different in the configs.

Here is an example that shows how to modify the configs:
1. Define the desirable evaluation metrics to record.

For example, you can define the search metrics as

search_metrics = ['MOTA', 'IDF1', 'FN', 'FP', 'IDs', 'MT', 'ML']

2. Define the parameters and the values to search.

Assume you have a tracker like

model = dict(
tracker=dict(
type="'BaseTracker',
obj_score_thr=0.5,
match_iou_thr=0.5

)

If you want to search the parameters of the tracker, just change the value to a list as follow

model = dict(
tracker=dict(
type="'BaseTracker',
obj_score_thr=[0.4, 0.5,
match_iou_thr=[0.4, 0.5,

1,

0.6
0.6, 0.7]

)

Then the script will test the totally 12 cases and log the results.

75

MMTracking, Release 0.8.0

76

Chapter 16. MOT Test-time Parameter Search

CHAPTER
SEVENTEEN

SIAMESERPN++ TEST-TIME PARAMETER SEARCH

tools/analysis/sot/sot_siamrpn_param_search.py can search the test-time tracking parameters in Siame-
seRPN++: penalty_k, 1r and window_influence. You need to pass the searching range of each parameter into the
argparser.

Example on UAV 123 dataset:

./tools/analysis/sot/dist_sot_siamrpn_param_search.sh [${CONFIG_FILE}] [$GPUS] \
[--checkpoint CHECKPOINT}] [--log LOG_FILENAME}] [--eval EVAL}] \
[--penalty-k-range 0.01,0.22,0.05] [--lr-range 0.4,0.61,0.05] [--win-infu-range 0.01,0.
-22,0.05]

Example on OTB100 dataset:

./tools/analysis/sot/dist_sot_siamrpn_param_search.sh [${CONFIG_FILE}] [$GPUS] \
[--checkpoint CHECKPOINT}] [--log LOG_FILENAME}] [--eval EVAL}] \
[--penalty-k-range 0.3,0.45,0.02] [--1lr-range 0.35,0.5,0.02] [--win-infu-range 0.46,0.55,
-0.02]

Example on VOT2018 dataset:

./tools/analysis/sot/dist_sot_siamrpn_param_search.sh [${CONFIG_FILE}] [$GPUS] \
[--checkpoint CHECKPOINT}] [--log LOG_FILENAME}] [--eval EVAL}] \
[--penalty-k-range 0.01,0.31,0.05] [--1lr-range 0.2,0.51,0.05] [--win-infu-range 0.3,0.56,
-0.05]

77

MMTracking, Release 0.8.0

78

Chapter 17. SiameseRPN++ Test-time Parameter Search

CHAPTER
EIGHTEEN

LOG ANALYSIS

tools/analysis/analyze_logs.py plots loss/fmAP curves given a training log file.

python tools/analyze_logs.py plot_curve [--keys ${KEVS}!] [--title ${TITLE}] [--legend
—{LEGEND}] [--backend BACKEND}] [--style STYLE}] [--out OUT_FILE}]

Examples:

Plot the classification loss of some run.

python tools/analysis/analyze_logs.py plot_curve log.json --keys loss_cls --legend.
—loss_cls

Plot the classification and regression loss of some run, and save the figure to a pdf.

python tools/analysis/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox..
—--out losses.pdf

Compare the bbox mAP of two runs in the same figure.

python tools/analysis/analyze_logs.py plot_curve logl.json log2.json --keys bbox_
—mAP --legend runl run2

Compute the average training speed.

python tools/analysis/analyze_logs.py cal_train_time log.json [--include-outliers]

The output is expected to be like the following.

slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028

average iter time: 1.1959 s/iter

79

MMTracking, Release 0.8.0

80

Chapter 18. Log Analysis

CHAPTER
NINETEEN

MODEL CONVERSION

19.1 Prepare a model for publishing

tools/analysis/publish_model.py helps users to prepare their model for publishing.
Before you upload a model to AWS, you may want to

1. convert model weights to CPU tensors

2. delete the optimizer states and

3. compute the hash of the checkpoint file and append the hash id to the filename.

python tools/analysis/publish_model.py INPUT_FILENAME OUTPUT_FILENAME

E.g.,

python tools/analysis/publish_model.py work_dirs/dff faster_rcnn_r101_dc5_1x_imagenetvid/
—.latest.pth dff_faster_rcnn_r101_dc5_1x_imagenetvid.pth

The final output filename will be dff_faster_rcnn_r101_dc5_1x_imagenetvid_20201230-{hash id}.pth.

81

MMTracking, Release 0.8.0

82

Chapter 19. Model Conversion

CHAPTER
TWENTY

20.1 Print the entire config

MISCELLANEOUS

tools/analysis/print_config.py prints the whole config verbatim, expanding all its imports.

python tools/analysis/print_config.py

CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]

83

MMTracking, Release 0.8.0

84

Chapter 20. Miscellaneous

CHAPTER
TWENTYONE

MODEL SERVING

In order to serve an MMTracking model with TorchServe, you can follow the steps:

21.1 1. Convert model from MMTracking to TorchServe

python tools/torchserve/mmtrack2torchserve.py ${CONFIG_FILE CHECKPOINT_FILE} \
--output-folder MODEL_STORE} \
--model-name MODEL_NAME

${MODEL_STORE} needs to be an absolute path to a folder.

21.2 2. Build mmtrack-serve docker image

docker build -t mmtrack-serve:latest docker/serve/

21.3 3. Run mmtrack-serve

Check the official docs for running TorchServe with docker.
In order to run in GPU, you need to install nvidia-docker. You can omit the --gpus argument in order to run in CPU.

Example:

docker run --rm \

--cpus 8 \

--gpus device=0 \

-p8080:8080 -p8081:8081 -p8082:8082 \

--mount type=bind, source=$MODEL_STORE, target=/home/model-server/model-store \
mmtrack-serve:latest

Read the docs about the Inference (8080), Management (8081) and Metrics (8082) APIs

85

https://pytorch.org/serve/
https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://github.com/pytorch/serve/blob/072f5d088cce9bb64b2a18af065886c9b01b317b/docs/rest_api

MMTracking, Release 0.8.0

21.4 4. Test deployment

curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T demo/demo.mp4 -o result.mp4

The response will be a “.mp4” mask.

You can visualize the output as follows:

import cv2
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
flag, frame = cap.read()
if not flag:
break
cv2.imshow('result.mp4', frame)
if cv2.waitKey(int (1000 / fps)) & OxFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows ()

And you can use test_torchserve.py to compare result of torchserve and pytorch, and visualize them.

python tools/torchserve/test_torchserve.py ${VIDEO_FILE CONFIG_FILE CHECKPOINT_
—FILE MODEL_NAME

[--inference-addr INFERENCE_ADDR}] [--result-video RESULT_VIDEO}] [--device DEVICE
-]

[--score-thr SCORE_THR}]

Example:

python tools/torchserve/test_torchserve.py \

demo/demo.mp4 \

configs/vid/selsa/selsa_faster_rcnn_r101_dc5_1x_imagenetvid.py \
checkpoint/selsa_faster_rcnn_r101_dc5_1x_imagenetvid_20201218_172724-aa961bcc.pth \
selsa \

--result-video=result.mp4

86 Chapter 21. Model Serving

CHAPTER
TWENTYTWO

CHANGELOG

22.1 v0.8.0 (03/10/2021)

22.1.1 New Features

* Support OTB100 dataset in SOT (#271)
* Support TrackingNet dataset in SOT (#268)
* Support UAV123 dataset in SOT (#260)

22.1.2 Bug Fixes

* Fix a bug in mot_param_search.py (#270)

22.1.3 Improvements

» Use PyTorch sphinx theme (#274)

» Use pycocotools instead of mmpycocotools (#263)

22.2 v0.7.0 (03/09/2021)

22.2.1 Highlights

* Release code of AAAI 2021 paper ‘Temporal ROI Align for Video Object Recognition’ (#247)
 Refactor English documentations (#243)
¢ Add Chinese documentations (#248), (#250)

87

https://github.com/open-mmlab/mmtracking/pull/271
https://github.com/open-mmlab/mmtracking/pull/268
https://github.com/open-mmlab/mmtracking/pull/260
https://github.com/open-mmlab/mmtracking/pull/270
https://github.com/open-mmlab/mmtracking/pull/274
https://github.com/open-mmlab/mmtracking/pull/263
https://github.com/open-mmlab/mmtracking/pull/247
https://github.com/open-mmlab/mmtracking/pull/243
https://github.com/open-mmlab/mmtracking/pull/248
https://github.com/open-mmlab/mmtracking/pull/250

MMTracking, Release 0.8.0

22.2.2 New Features

Support fp16 training and testing (#230)

* Release model using ResNeXt-101 as backbone for all VID methods (#254)
* Support the results of Tracktor on MOT15, MOT16 and MOT20 datasets (#217)

* Support visualization for single gpu test (#216)

22.2.3 Bug Fixes
* Fix a bug in MOTP evaluation (#235)

* Fix two bugs in reid training and testing (#249)

22.2.4 Improvements

¢ Refactor anchor in SiameseRPN++ (#229)
 Unify model initialization (#235)
¢ Refactor unittest (#231)

22.3 v0.6.0 (30/07/2021)

22.3.1 Highlights

« Fix training bugs of all three tasks (#219), (#221)

22.3.2 New Features

 Support error visualization for mot task (#212)

22.3.3 Bug Fixes

* Fix a bug in SOT demo (#213)

22.3.4 Improvements

e Use MMCYV registry (#220)
* Add README.md for reid training (#210)
* Modify dict keys of the outputs of SOT (#223)

* Add Chinese docs including install.md, quick_run.md, model_zoo.md, dataset.md (#205), (#214)

88

Chapter 22. Changelog

https://github.com/open-mmlab/mmtracking/pull/230
https://github.com/open-mmlab/mmtracking/pull/254
https://github.com/open-mmlab/mmtracking/pull/217
https://github.com/open-mmlab/mmtracking/pull/216
https://github.com/open-mmlab/mmtracking/pull/235
https://github.com/open-mmlab/mmtracking/pull/249
https://github.com/open-mmlab/mmtracking/pull/229
https://github.com/open-mmlab/mmtracking/pull/235
https://github.com/open-mmlab/mmtracking/pull/231
https://github.com/open-mmlab/mmtracking/pull/219
https://github.com/open-mmlab/mmtracking/pull/221
https://github.com/open-mmlab/mmtracking/pull/212
https://github.com/open-mmlab/mmtracking/pull/213
https://github.com/open-mmlab/mmtracking/pull/220
https://github.com/open-mmlab/mmtracking/pull/210
https://github.com/open-mmlab/mmtracking/pull/223
https://github.com/open-mmlab/mmtracking/pull/205
https://github.com/open-mmlab/mmtracking/pull/214

MMTracking, Release 0.8.0

22.4 v0.5.3 (01/07/2021)

22.4.1 New Features

» Support RelD training (#177), (#179), (#180), (#181),
* Support MIM (#158)

22.4.2 Bug Fixes

¢ Fix evaluation hook (#176)

* Fix a typo in vid config (#171)

22.4.3 Improvements

* Refactor nms config (#167)

22.5 v0.5.2 (03/06/2021)

22.5.1 Improvements

* Fixed typos (#104, #121, #145)

* Added conference reference (#111)

» Updated the link of CONTRIBUTING to mmcv (#112)
* Adapt updates in mmcv (FP16Hook) (#114, #119)

* Added bibtex and links to other codebases (#122)

¢ Added docker files (#124)

¢ Used collect_env in mmcv (#129)

* Added and updated Chinese README (#135, #147, #148)

22.6 v0.5.1 (01/02/2021)

22.6.1 Bug Fixes

¢ Fixed RelD checkpoint loading (#80)
* Fixed empty tensor in track_result (#86)
* Fixed wait_time in MOT demo script (#92)

22.4. v0.5.3 (01/07/2021)

89

https://github.com/open-mmlab/mmtracking/pull/177
https://github.com/open-mmlab/mmtracking/pull/179
https://github.com/open-mmlab/mmtracking/pull/180
https://github.com/open-mmlab/mmtracking/pull/181
https://github.com/open-mmlab/mmtracking/pull/158
https://github.com/open-mmlab/mmtracking/pull/176
https://github.com/open-mmlab/mmtracking/pull/171
https://github.com/open-mmlab/mmtracking/pull/167
https://github.com/open-mmlab/mmtracking/commit/3ccc9b79ce6e14e013268d0dbb53462c0432f357
https://github.com/open-mmlab/mmtracking/commit/fadcd811df095781fbbdc7c47f8dac1305555461
https://github.com/open-mmlab/mmtracking/commit/48a47868abd9a0d96c010fc3f85cba1bd2854a9b
https://github.com/open-mmlab/mmtracking/commit/9a3c463b087cdee201a9345f270f6c01e116cf2c
https://github.com/open-mmlab/mmtracking/commit/b725e63463b1bd795fd3c3000b30ef37832a844d
https://github.com/open-mmlab/mmtracking/commit/49f910878345250d22fd5da1104f1fb227244939
https://github.com/open-mmlab/mmtracking/commit/f1df53dd8e571f4674867919d1886b9fb2024bf9
https://github.com/open-mmlab/mmtracking/commit/1b456423e0aeddb52e7c29e5b0ec3d48e058c615
https://github.com/open-mmlab/mmtracking/commit/a01c3e8fff97a2b8eebc8d28e3e9d9a360ffbc3c
https://github.com/open-mmlab/mmtracking/commit/0055947c4d19c8921c32ce128ae0314d61e593d2
https://github.com/open-mmlab/mmtracking/commit/ecc83b5e6523582b92196095eb21d72d654322f2
https://github.com/open-mmlab/mmtracking/commit/19004b6eeca594a2179d8b3a3622764e1753aa4d
https://github.com/open-mmlab/mmtracking/commit/dc367868453fdcb528041176a59ede368f0e2053
https://github.com/open-mmlab/mmtracking/pull/80
https://github.com/open-mmlab/mmtracking/pull/86
https://github.com/open-mmlab/mmtracking/pull/92

MMTracking, Release 0.8.0

22.6.2 Improvements

* Support single-stage detector for DeepSORT (#100)

22.7 v0.5.0 (04/01/2021)

22.7.1 Highlights

* MMTracking is released!

22.7.2 New Features

* Support video object detection methods: DFF, FGFA, SELSA
» Support multi object tracking methods: SORT/DeepSORT, Tracktor

* Support single object tracking methods: SiameseRPN++

90

Chapter 22. Changelog

https://github.com/open-mmlab/mmtracking/pull/100
https://arxiv.org/abs/1611.07715
https://arxiv.org/abs/1703.10025
https://arxiv.org/abs/1907.06390
https://arxiv.org/abs/1602.00763
https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/1903.05625
https://arxiv.org/abs/1812.11703

CHAPTER
TWENTYTHREE

ENGLISH

91

MMTracking, Release 0.8.0

92

Chapter 23. English

CHAPTER
TWENTYFOUR

93

MMTracking, Release 0.8.0

94

Chapter 24.

CHAPTER
TWENTYFIVE

MMTRACK.APIS

95

MMTracking, Release 0.8.0

96

Chapter 25. mmtrack.apis

CHAPTER
TWENTYSIX

26.1 anchor
26.2 evaluation
26.3 motion
26.4 optimizer
26.5 track

26.6 utils

MMTRACK.CORE

97

MMTracking, Release 0.8.0

98

Chapter 26. mmtrack.core

CHAPTER
TWENTYSEVEN

MMTRACK.DATASETS

27.1 datasets
27.2 parsers
27.3 pipelines

27.4 samplers

class mmtrack.datasets.samplers.DistributedVideoSampler (dataset, num_replicas=None, rank=None,
shuffle=False)
Put videos to multi gpus during testing.

Parameters

» dataset (Dataset) — Test dataset that must has data_infos attribute. Each data_info in
data_infos record information of one frame, and each video must has one data_info that
includes data_info[‘frame_id’] == 0.

e num_replicas (int) — The number of gpus. Defaults to None.
e rank (int) — Gpu rank id. Defaults to None.
» shuffle (bool) — If True, shuffle the dataset. Defaults to False.

99

MMTracking, Release 0.8.0

100 Chapter 27. mmtrack.datasets

CHAPTER
TWENTYEIGHT

MMTRACK.MODELS

28.1 mot
28.2 sot
28.3 vid

28.4 aggregators

class mmtrack.models.aggregators.EmbedAggregator (num_convs=1, channels=256, kernel_size=3,
norm_cfg=None, act_cfg={"type': 'ReLU'},
init_cfg=None)
Embedding convs to aggregate multi feature maps.

This module is proposed in “Flow-Guided Feature Aggregation for Video Object Detection”. FGFA.
Parameters
* num_convs (int) — Number of embedding convs.
¢ channels (int) — Channels of embedding convs. Defaults to 256.
* kernel_size (int) — Kernel size of embedding convs, Defaults to 3.
» norm_cfg (dict)- Configuration of normlization method after each conv. Defaults to None.

» act_cfg (dict) — Configuration of activation method after each conv. Defaults to
dict(type="ReLU").

e init_cfg (dict or list[dict], optional) — Initialization config dict. Defaults to
None.

forward(x, ref x)
Aggregate reference feature maps ref _x.

The aggregation mainly contains two steps: 1. Computing the cos similarity between x and ref x. 2. Use
the normlized (i.e. softmax) cos similarity to weightedly sum ref _x.

Parameters
* x (Tensor) — of shape [1, C, H, W]
e ref_x (Tensor) — of shape [N, C, H, W]. N is the number of reference feature maps.

Returns The aggregated feature map with shape [1, C, H, W].

101

https://arxiv.org/abs/1703.10025

MMTracking, Release 0.8.0

Return type Tensor

class mmtrack.models.aggregators.SelsaAggregator (in_channels, num_attention_blocks=16,
init_cfg=None)
Selsa aggregator module.

This module is proposed in “Sequence Level Semantics Aggregation for Video Object Detection”. SELSA.
Parameters
e in_channels (int) — The number of channels of the features of proposal.

* num_attention_blocks (int) — The number of attention blocks used in selsa aggregator
module. Defaults to 16.

e init_cfg (dict or list[dict], optional) — Initialization config dict. Defaults to
None.

forward(x, ref x)
Aggregate the features ref_x of reference proposals.

The aggregation mainly contains two steps: 1. Use multi-head attention to computing the weight between
x and ref_x. 2. Use the normlized (i.e. softmax) weight to weightedly sum ref x.

Parameters

* x (Tensor) — of shape [N, C]. N is the number of key frame proposals.

e ref_x (Tensor) — of shape [M, C]. M is the number of reference frame proposals.
Returns The aggregated features of key frame proposals with shape [N, C].

Return type Tensor

28.5 backbones
28.6 losses

28.7 motion

28.8 reid

28.9 roi_heads
28.10 track heads

28.11 builder

102 Chapter 28. mmtrack.models

https://arxiv.org/abs/1907.06390

CHAPTER
TWENTYNINE

MMTRACK.UTILS

mmtrack.utils.collect_env()
Collect the information of the running environments.

mmtrack.utils.get_root_logger (log_file=None, log_level=20)
Get root logger.

Parameters

* log_file (str) — File path of log. Defaults to None.

* log_level (int) — The level of logger. Defaults to logging.INFO.
Returns The obtained logger
Return type logging.Logger

103

MMTracking, Release 0.8.0

104 Chapter 29. mmtrack.utils

CHAPTER
THIRTY

INDICES AND TABLES

* genindex

e search

105

MMTracking, Release 0.8.0

106 Chapter 30. Indices and tables

PYTHON MODULE INDEX

m
mmtrack.datasets.samplers, 99
mmtrack.models.aggregators, 101
mmtrack.utils, 103

107

MMTracking, Release 0.8.0

108 Python Module Index

C

collect_env() (in module mmtrack.utils), 103

D

DistributedVideoSampler (class in mm-
track.datasets.samplers), 99

E

EmbedAggregator (class in mm-
track.models.aggregators), 101

F

forward () (mmtrack.models.aggregators.EmbedAggregator

method), 101

forward () (mmtrack.models.aggregators.SelsaAggregator

method), 102

G

get_root_logger () (in module mmtrack.utils), 103

M

mmtrack.datasets.samplers
module, 99

mmtrack.models.aggregators
module, 101

mmtrack.utils
module, 103

module
mmtrack.datasets.samplers, 99
mmtrack.models.aggregators, 101
mmtrack.utils, 103

S

SelsaAggregator (class in mm-
track.models.aggregators), 102

INDEX

109

	Prerequisites
	Installation
	Detailed Instructions
	A from-scratch setup script
	Developing with multiple MMTracking versions

	Verification
	Model Zoo Statistics
	Benchmark and Model Zoo
	Common settings
	Baselines of video object detection
	DFF (CVPR 2017)
	FGFA (ICCV 2017)
	SELSA (ICCV 2019)
	Temporal RoI Align (AAAI 2021)

	Baselines of multiple object tracking
	SORT/DeepSORT (ICIP 2016/2017)
	Tracktor (ICCV 2019)

	Baselines of single object tracking
	SiameseRPN++ (CVPR 2019)

	Baselines of video instance segmentation
	MaskTrack R-CNN (ICCV 2019)

	Dataset Preparation
	1. Download Datasets
	1.1 Video Object Detection
	1.2 Multiple Object Tracking
	1.3 Single Object Tracking
	1.4 Video Instance Segmentation
	1.5 Data Structure

	2. Convert Annotations
	The folder of annotations in ILSVRC
	The folder of annotations and reid in MOT15/MOT16/MOT17/MOT20
	The folder of annotations in crowdhuman
	The folder of annotations in lasot
	The folder of annotations in UAV123
	The folder of frames and annotations in TrackingNet
	The folder of data and annotations in OTB100
	The folder of frames and annotations in GOT10k
	The folder of data and annotations in VOT2018
	The folder of annotations in youtube_vis_2019/youtube_vis2021

	Run with Existing Datasets and Models
	Inference
	Inference VID models
	Inference MOT/VIS models
	Inference SOT models

	Testing
	Examples of testing VID model
	Examples of testing MOT model
	Examples of testing SOT model
	Examples of testing VIS model

	Training
	Training on a single GPU
	Training on multiple GPUs
	Training on multiple nodes
	Manage jobs with Slurm
	Examples of training VID model
	Examples of training MOT model
	Examples of training SOT model
	Examples of training VIS model

	Run with Customized Datasets and Models
	1. Prepare the customized dataset
	2. Prepare the customized model
	3. Prepare a config
	4. Train a new model
	5. Test and inference the new model

	Learn about Configs
	Modify config through script arguments
	Config File Structure
	Config Name Style
	Detailed analysis of Config File
	FAQ
	Ignore some fields in the base configs
	Use intermediate variables in configs

	Customize Datasets
	Convert the dataset into CocoVID style
	The CocoVID annotation file
	Modify the config

	Using dataset wrappers
	Repeat dataset
	Class balanced dataset
	Concatenate dataset

	Subset of existing datasets

	Customize Data Pipelines
	Data pipeline for a single image
	Data pipeline for multiple images
	1. Sample reference images
	2. Sequentially process and collect the data
	3. Concat the reference images (if applicable)
	4. Format the output to a dictionary

	Customize VID Models
	Add a new detector
	Add a new motion model
	1. Define a motion model (e.g. MyFlowNet)
	2. Import the module
	3. Modify the config file

	Add a new aggregator
	1. Define a aggregator (e.g. MyAggregator)
	2. Import the module
	3. Modify the config file

	Customize MOT Models
	Add a new tracker
	1. Define a tracker (e.g. MyTracker)
	2. Import the module
	3. Modify the config file

	Add a new detector
	Add a new motion model
	1. Define a motion model (e.g. MyFlowNet)
	2. Import the module
	3. Modify the config file

	Add a new reid model
	1. Define a reid model (e.g. MyReID)
	2. Import the module
	3. Modify the config file

	Add a new track head
	1. Define a head (e.g. MyHead)
	2. Import the module
	3. Modify the config file

	Add a new loss
	1. define a loss (e.g. MyLoss)
	2. Import the module
	3. Modify the config file

	Customize SOT Models
	Add a new backbone
	1. Define a new backbone (e.g. MobileNet)
	2. Import the module
	3. Use the backbone in your config file

	Add a new neck
	1. Define a neck (e.g. MyFPN)
	2. Import the module
	3. Modify the config file

	Add a new head
	1. Define a head (e.g. MyHead)
	2. Import the module
	3. Modify the config file

	Add a new loss

	Customize Runtime Settings
	Customize optimization settings
	Customize optimizer supported by Pytorch
	Customize self-implemented optimizer
	1. Define a new optimizer
	2. Add the optimizer to registry
	3. Specify the optimizer in the config file

	Customize optimizer constructor
	Additional settings

	Customize training schedules
	Customize workflow
	Customize hooks
	Customize self-implemented hooks
	1. Implement a new hook
	2. Register the new hook
	3. Modify the config

	Use hooks implemented in MMCV
	Modify default runtime hooks
	Checkpoint hook
	Log hook
	Evaluation hook

	MOT Test-time Parameter Search
	SiameseRPN++ Test-time Parameter Search
	Log Analysis
	Model Conversion
	Prepare a model for publishing

	Miscellaneous
	Print the entire config

	Model Serving
	1. Convert model from MMTracking to TorchServe
	2. Build mmtrack-serve docker image
	3. Run mmtrack-serve
	4. Test deployment

	Changelog
	v0.8.0 (03/10/2021)
	New Features
	Bug Fixes
	Improvements

	v0.7.0 (03/09/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements

	v0.6.0 (30/07/2021)
	Highlights
	New Features
	Bug Fixes
	Improvements

	v0.5.3 (01/07/2021)
	New Features
	Bug Fixes
	Improvements

	v0.5.2 (03/06/2021)
	Improvements

	v0.5.1 (01/02/2021)
	Bug Fixes
	Improvements

	v0.5.0 (04/01/2021)
	Highlights
	New Features

	English
	简体中文
	mmtrack.apis
	mmtrack.core
	anchor
	evaluation
	motion
	optimizer
	track
	utils

	mmtrack.datasets
	datasets
	parsers
	pipelines
	samplers

	mmtrack.models
	mot
	sot
	vid
	aggregators
	backbones
	losses
	motion
	reid
	roi_heads
	track_heads
	builder

	mmtrack.utils
	Indices and tables
	Python Module Index
	Index

